

#### Simulating Access and Patient Flow for a Cardiovascular ICU

Luke Liu, Prof. Amy Cohn, Dr. Hitinder Gurm





#### OUTLINE

**Research Motivation** 

Introduction

**Problem Statement** 

**Simulation Framework** 

Analyses

**Future Research** 

#### **RESEARCH MOTIVATION**

What is the aortic dissection (AD) patient experience?

> Ensure adequate capacity for all transfer requests to the Cardiovascular Center (CVC) at Michigan Medicine (MM)

0

#### **INITIAL RESEARCH QUESTION**





#### **INITIAL RESEARCH QUESTION**

# It's a lot more complicated than that.



#### **THE BIGGER PICTURE**



= All Other Cardiac Patient Types

#### PATIENT FLOW IN CARDIOVASCULAR SURGERY



#### **TRANSFER REQUESTS**

Preliminary analysis conducted by the CVC staff showed that the most common reason for patient deferral when requesting transfer to Michigan Medicine is attributed to unavailable ICU beds.



#### **APPROACH TO IMPROVING ICU UTILIZATION**



# **SIMULATION FRAMEWORK**

#### **FIXED INPUTS**

- Bed Count per Unit
- Time Horizon
- Number of Replications

#### **VARIABLE INPUTS**

- Patient Arrival Rate
- Length of Stay in ICU and Step Down (SDn) units
- Bounce Back Probability

# **SIMULATION FRAMEWORK**



# **SIMULATION FRAMEWORK**

#### **METRICS**

| Number of                                                                                                     |                                                                                                                  |     |     |
|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----|-----|
| Patient Arrivals                                                                                              |                                                                                                                  |     |     |
| Accepted Patients                                                                                             |                                                                                                                  |     | min |
| Denied Patients                                                                                               |                                                                                                                  |     |     |
| ICU                                                                                                           | Step Down (SDn)                                                                                                  |     |     |
| <ul> <li>Patient LOS</li> <li>Unnecessary days in an ICU bed (SDn status)</li> <li>Bed Utilization</li> </ul> | <ul> <li>Patient LOS</li> <li>Unnecessary days in a<br/>SDn bed (ICU status)</li> <li>Bed Utilization</li> </ul> | med | max |

#### ANALYSES

#### **SDn** Variation

 Change number of shared SDn beds

#### Bounce Back Rate

 Change the rate of bounce back incrementally 2

# **BASE CASE PARAMETERS**

- 1 Patient Type
- Arrival Rate = 0.33 patient/hr
- Time Horizon = 1 Year
- Replications = 1,000

- Bernoulli trial for transfer and discharge from respective units
  - P<sub>ICU Transfer</sub> = 0.25



# **ANALYSIS 1: SDN VARIATION**

| Allocated Step Down Beds   | 28        | 32        | 36        | 40        |
|----------------------------|-----------|-----------|-----------|-----------|
| Annual Patient Arrival     | 2879      | 2875      | 2878      | 2877      |
| Patients Denied            | 8.1%      | 5.8%      | 4.8%      | 4.5%      |
| ICU Average LOS ICU Status | 3.45 days | 3.44 days | 3.44 days | 3.44 days |
| ICU Average LOS SDn Status | 0.34 days | 0.14 days | 0.04 days | 0.01 days |
| SDn Average LOS            | 3.70 days | 3.78 days | 3.82 days | 3.83 days |
| SDn Bed Utilization        | 94.23%    | 88.98%    | 82.06%    | 74.73 %   |

- Time Horizon = 1 Year
- Replications = 1,000

- 36 ICU Beds
- 16 Dedicated SDn Beds

## **ANALYSIS 2: BOUNCE BACK**

#### **Bounce Back Rate Increments**

| Bounce Back Rate           | 0%        | 5%        | 10%       | 15%       |
|----------------------------|-----------|-----------|-----------|-----------|
| Annual Patient Arrival     | 2875      | 2871      | 2873      | 2872      |
| Patients Denied            | 5.8%      | 13%       | 22%       | 31%       |
| ICU Average LOS ICU Status | 3.44 days | 3.85 days | 4.09 days | 4.39 days |
| ICU Average LOS SDn Status | 0.14 days | 0.31 days | 0.68 days | 1.15 days |
| SDn Average LOS            | 3.78 days | 4.19 days | 4.43 days | 4.45 days |
| SDn Average LOS ICU Status | 0 days    | 0.15 days | 0.45 days | 0.76 days |
| ICU Bed Utilization        | 78.88%    | 85.95%    | 89.53%    | 92.02%    |

- Time Horizon = 1 Year
- Replications = 1,000

- 36 ICU Beds
- 32 SDn Beds

## **ANALYSES TAKEAWAYS**

Analysis 1: SDn Variation

- The unnecessary ICU bed days decreases as SDn beds are added to a certain point
- Trade-offs will be necessary

Analysis 2: Bounce Back

- Small rates of bounce back impact utilization and flow
- Patient information would allow us to more accurately predict bounce back rates

#### **FUTURE RESEARCH**

- Expanding the tool
  - Adding more patient types
  - Adding patient predictors of bounce back
- Conducting Analysis
  - More data!
  - Explore smoothing elective surgery

#### ACKNOWLEDGEMENTS



Thank you to Ambika Agrawal, Amanda Moreno-Hernandez, Harini Pennathur, Hadi Saab, Ziqi Wang, Shuhao Zhou, and all prior CHEPS students who have contributed to this work!

# **Questions?**



### LITERATURE REVIEW

| First Author | Reference | Year | Objective/Purpose                                                                                                                                                                                |
|--------------|-----------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Levin, S.    | [5]       | 2011 | To test policies to reduce patient's length of stay (LOS) and increase patient throughput.                                                                                                       |
| Marmor, Y.   | [6]       | 2013 | To predict minimum bed needs to achieve the high patient service level demanded for the cardiovascular ICU.                                                                                      |
| Levin, S.    | [7]       | 2015 | To estimate patients' wait time while integrating the effect<br>of the transition process (i.e. wait time for a bed to<br>become available) with queuing using embedded<br>regression models.    |
| Kolker, A.   | [8]       | 2009 | To establish a quantitative link between the daily load<br>leveling of elective surgeries (i.e. elective schedule<br>smoothing) and ICU diversion of multiple ICU units<br>including cardio ICU. |

INTRODUCTION | PROBLEM STATEMENT | LITERATURE REVIEW | SIMULATION | ANALYSIS | FUTURE RESEARCH

#### REFERENCES

[1] Criado, Frank J. "Aortic Dissection: A 250-Year Perspective." Ed. Joseph S. Coselli. Texas Heart Institute Journal 38.6 (2011): 694–700.

[2] Farber, Mark A, and Thaniyyah S Ahmad. "Aortic Dissection." Merk Manual, Merck Sharp & Dohme Corp, March 2017.

[3] Birkmeyer JD, Siewers AE, Finlayson EV, Stukel TA, Lucas FL, Batista I, Welch HG, Wennberg DE (2002) Hospital volume and surgical mortality in the United States. N Engl J Med 346(15): 1128–1137

[4] Heidenreich, Paul A., et al. "Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association." Circulation 123.8 (2011): 933-944

[5] Levin, Scott, et al. "Evaluating the effects of increasing surgical volume on emergency department patient access." BMJ quality & safety 20.2 (2011): 146-152.

[6] Marmor, Yariv N., et al. "Recovery bed planning in cardiovascular surgery: a simulation case study." Health care management science 16.4 (2013): 314-327.

[7] Levin, Scott, and Maxim Garifullin. "Simulating wait time in healthcare: accounting for transition process variability using survival analyses." 2015 Winter Simulation Conference (WSC). IEEE, 2015.

[8] Kolker, Alexander. "Process modeling of ICU patient flow: effect of daily load leveling of elective surgeries on ICU diversion." Journal of medical systems 33.1 (2009): 27.

[9] Halpern, Neil A., et al. "Trends in critical care beds and use among population groups and medicare and medicaid beneficiaries in the United States: 2000–2010." Critical care medicine 44.8 (2016): 1490.