

Evaluating Screening and Care of Diabetic Retinopathy in Veterans Using Mixed-Integer Programming and Simulation

Adam Van Deusen, MPH • April Maa, MD • Amy Cohn, PhD INFORMS Annual Meeting

October 21, 2019

CHEPS

A prescription to address system complexity in healthcare INNOVATING HEALTHCARE DELIVERY

FOSTERING LEARNING

BUILDING COMMUNITY

Research
Education
Implementation
Outreach
Dissemination

Background

- Diabetes and diabetic retinopathy (DR)
 - Diabetes → blood sugar → retinal eye vessels weakened
 /weak new vessels → damage to vision
- DR diagnosed by an eye care specialist
 - Early retinopathy = monitoring, diabetes management
 - Advanced retinopathy = photocoagulation,
 vitrectomy, medical injection
 - Even after treatment, DR can reemerge

MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCH. ALL RIGHTS RESERVED.

Veteran Eye Care

- Veterans face barriers accessing eye care
 - Access big challenge for rural veterans
 - Veterans report greater delays in seeking care than non-veterans
 - Eye care is 3rd most utilized service in VA (after primary care and mental health)
- Diabetes prevalence: VA patients (11.4%) > general US population (7.2%)
- Why VA research?
 - VA is cost-incentivized to reduce barriers to accessing care
 - Patient utilization of care is relatively consistent
 - Care coordination in VA: primary care/ophthalmology/endocrinology

Veteran Eye Care in Georgia

Add Screening Options

What kind of problem is this?

- Combinatorial matching problem
 - Deciding locations to offer eye care and how to staff those locations
- Constrained resources
- Multi-criteria decision
 - Consider cost, distance traveled, number of patients seen, etc.

Problem Statement

- Goal: Evaluate <u>which locations</u> to offer eye care screenings and <u>what provider type(s)</u> to staff each eye care location
- Assumptions:
 - Patients go to "assigned" clinic for eye care screening
 - One-year time frame
 - Patients have homogeneous screening need (one screening every other year)
- Limitations:
 - Considering eye care screening only (follow-up care not included)
 - No consideration for patients' provider preferences

Possible eye care locations

 28 VA locations in Georgia

Decide

- At which locations do we offer eye care?
- What kind(s) of provider(s) should staff each location?

"Assign" patients

 Patients from a given zip code assigned to clinic location(s)

Model Overview: Feasibility Constraints

Patient Capacity

$$\sum_{z \in Z} x_{zc}^t \le v^t * y_c^t \qquad \forall \ c \in C, \ \forall t \in T$$

Demand

$$\sum \sum x_{zc}^t \le n_u * p_z \qquad \forall \ z \in Z$$

 $\sum \sum x_{zc}^t \ge n_l * p_z \qquad \forall \ z \in Z$

Provider Capacity

$$y_c^t \leq g_c^t \qquad \forall t \in T, \forall c \in C$$

 $t \in T \ c \in C$

$$\sum_{t \in T} y_c^t \le g_c \qquad \forall c \in C$$

Model Overview: Two objective functions

I. Maximize patients assigned

+ constraints: budget, distance

 $Maximize \sum_{z \in Z} \sum_{c \in C} \sum_{t \in T} \ x_{zc}^t$

II. Minimize overall costs

+ constraints: patients, distance

$$\begin{split} Minimize \ [\sum_{c \in C} \sum_{z \in Z} \sum_{t \in T} (a_c^t * x_{zc}^t + (d_{zc} * x_{zc}^t) * r + f_c^t * y_c^t)] \\ + h * \sum_{z \in Z} (n_u * p_z - \sum_{t \in T} \sum_{c \in C} x_{zc}^t) \end{split}$$

Data Overview

- Patients accessing Georgia VA for (any) care in 2017
 - Approx. 200,000 patients, grouped by zip code
- Clinic locations: 28 VA clinics in Georgia
- Driving distance from center of each zip code to each clinic location calculated via Google API
- Budget/costs, provider capacities, and other clinic-specific values obtained from VA
- Model implemented in CPLEX

Results

Metric	Model A: Maximize Patients Assigned		Model B: Minimize Cost	
	Baseline Providers	Start from Scratch	Baseline Providers	Start from Scratch
Patients Screened	86,340	91,577	20,371	20,160
Average driving distance (miles)	15.8	27.6	21.9	23.2
Total Cost	\$24.0 M	\$25.0 M	\$7.0 M	\$5.3 M
Per Patient Cost	\$277	\$273	\$329	\$266

Follow-up care for diabetic retinopathy

- We have considered DR screening, but what about longer term treatment?
- Use simulation to "follow" DR patients through treatment
 - Consider downstream effects of technician screenings
 - Determine best mix of MDs/ODs/technicians

Conclusions & next steps

- Each objective function inherently considers trade-offs, but access to diabetic retinopathy screening can be strategically implemented
- Tool can be used by VA when evaluating community care integration
- Next...
 - Further consider implications for follow-up care
 - Generalize beyond Georgia

Acknowledgements

Student Research Team

Kate Burns

Michelle Chen

Malcolm Hudson

Matthew Levenson

Justin Rogers

Carolyn Wu

Adam Van Deusen

ajvandeu@umich.edu

Center for Healthcare Engineering & Patient Safety

cheps-contact@umich.edu

Implementation Challenges

- We solve using CPLEX, not available for provider organizations like the VA
- Implement in Microsoft Excel OpenSolver