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GOAL

Reduce patient waiting time by mixing
chemotherapy drugs before patients arrive in

the system or at earlier stages in the process
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MOTIVATION

« Cancer
* ~1.8 million new cases estimated in 2019
* More than half require chemotherapy treatment
 Variable infusion treatment times (30 min — 8 hr)

e Infusion centers

 Increased outpatient demand leads to
undesirable outcomes such as:

 Increased patient waiting times

 QOverworked staff Source;

American Cancer Society (2019) http://www.cancer.org
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WHAT IS CHEMOTHERAPY?

 Typically require solutions to be made in pharmacy
« Hang-by time — time after drug is made until it must be administered

e Used to

e Control
e Cure
 Ease

 Variable doses correlate to patient weight
 Solution administered by IV over time (variable)

V4
» Drugs vary in cost ($10-$20,000+) “
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PRE-MIXING CHEMOTHERAPY DRUGS

* Anytime a drug is mixed before a patient is deemed ready to
receive it

* Factors to consider:
« Last minute cancellation may lead to wasting pre-mixed drug
« Storage safety protocol
« Tradeoff between waste cost and reduced patient waiting time
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PRE-MIXING CHEMOTHERAPY DRUGS

University of Michigan Rogel Cancer Center (UMRCCQC)
* Will only pre-mix drugs during a fixed window of 6am-8am

* Pre-mix based on a fixed list of drugs
Based on cost and common use

* We expand this by considering patient probability of deferral
and the number of patients scheduled for a particular drug
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PRE-MIXING LITERATURE REVIEW

» Masselink, I. H., van der Mijden, T. L., Litvak, N., & Vanberkel,
P. T. (2012). Preparation of chemotherapy drugs: Planning
policy for reduced waiting times. Omega, 40(2), 181-187.

« Soh, T. I. P, Tan, Y. S., Hairom, Z., Ibrahim, M., Yao, Y., Wong,
Y. P, ..&Tan, C. S. (2014). Improving wait times for elective
chemotherapy through pre-preparation: a quality-improvement
project at the National University Cancer Institute of
Singapore. Journal of oncology practice, 11(1), e89-e94.
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OUTLINE

* Model Description
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OPTIMIZATION MODEL DESCRIPTION

» Chemotherapy Pre-mix Integer Program with hang-by time
(CPIP-HT)
* Verification — performed by pharmacists
« Compounding — done by technicians

* Objective
* Maximize the difference between expected saved wait time and waste
cost

e Two-hour window to pre-mix
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OPTIMIZATION MODEL ASSUMPTIONS

 All drugs’ mixing times are deterministic
« Each patient is scheduled for only one drug

* Pharmacy task can be reduced to two steps

* Probability of deferral taken from BART
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OUTLINE

 Probability of Wasting a Pre-mixed Drug
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PREDICTING PATIENT DEFERRALS

» Defining a patient treatment deferral

» Patient arrives at the cancer center but is unable to receive their
treatment (i.e. last minute cancellation)

* Oncologist or nurse may deem them too ill for treatment after arrival

* Unplanned treatment change

» Social support
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PREDICTING PATIENT DEFERRALS

* Prediction Model
 Utilized patient specific data to predict their chance of deferral

 Richardson, D. B., Guikema, S. D., & Cohn, A. E. (2017). Predicting
Patient Treatment Deferrals at an Outpatient Chemotherapy Infusion
Center: A Statistical Approach. JCO Clinical Cancer Informatics, 1, 1-8.
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PROBABILITY OF WASTING A DRUG

Let S be defined as the set containing the probability of deferrals p, for all i
patients scheduled to receive the same drug. Given m total patients (i e m)

S ={pLp2rPm}

O 6 6 0 o
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PROBABILITY OF WASTING A DRUG

Let S be defined as the set containing the probability of deferrals p, for all i
patients scheduled to receive the same drug. Given m total patients (i e m)

S = {p1,P2 ) Pm ) ®© 6 6 o o
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PROBABILITY OF WASTING A DRUG
WITH HANG-BY TIME

Pre-mix Window

\
[ |

|
| | | |

Infusion P1 P2 b3
Start 9:00am 11:00am 1:00pm
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PROBABILITY OF WASTING A DRUG
WITH HANG-BY TIME

|
| | | |

d; d, Infusion P1 P2 P3
Start
9:00am 11:00am 1:00pm
P(1) = p1p;
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PROBABILITY OF WASTING A DRUG
WITH HANG-BY TIME

|
| | | |

d; d, Infusion P1 P2 P3
Start
9:00am 11:00am 1:00pm
P(1) = p1p;
P(2) = p1p2ps3
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PROBABILITY OF WASTING A DRUG
WITH HANG-BY TIME

|
| | | |

d; d, Infusion P1 P2 P3
Start
9:00am 11:00am 1:00pm
P(1) = p1p;

P(2) = p1pop3 + (1 — 1) p2p3 + (1 — p2)p1p3 = p3

O O © ® 0 ©
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PROBABILITY OF WASTING A DRUG
WITH HANG-BY TIME

|
| | | |

d4 d2  Infusion P1 P2 P3
Start
9:00am 11:00am 1:00pm
P(1) = p1p2

P(2) = p1pop3 + (1 — 1) p2p3 + (1 — p2)p1p3 = p3
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PROBABILITY OF WASTING A DRUG
WITH HANG-BY TIME

|
d, } K d, } | | |

<@ \a o NN o\ Infusion P1 P2 P3
N Nl (OO~ Start
h o« W i 9:00am 11:00am 1:00pm

 We then use the upper and lower time bounds on each dose to make sure
the drug is made both early and late enough to be viable for a pre-
determined set of patients
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PATIENT ELIGIBILITY VECTOR

. el is the it" eligibility vector of drug d € D Now
suppose we have 3 doses of a drug d

ed =100 0]

« zero doses of this drug were pre-mixed
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PATIENT ELIGIBILITY VECTOR

. el is the it" eligibility vector of drug d € D Now
suppose we have 3 doses of a drug d

|
| | | |

d, d, Infusion P4 P2 P3
Start
9:00am 11:00am 1:00pm

efh =23 0]

* the first dose will only be viable for the first two
patients while the second will be viable for all
three patients. The third dose is not pre-mixed
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OUTLINE

 Model Formulation
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OPTIMIZATION MODEL

WVe first define our Expected Waste cost of a drug with the following:

mg mq
d . . d 1 - .
Ef[Waste Cost] = ¢4 ) Pz(n,i) Ei’[Saved Wait] = Ay ) [1 — Py(n,i)]

Parameters

Sets
A, the value of savings of drug d € D (i.e, (p41+p42) *dollar value of D: set of drugs d (e.g. 50 mg of Taxotere)
patient waiting time E4: set patient eligibility vectors for alld € D
c; the costofdrug d Variables

o 4 1 if we select patient eligibility vectori € E for drug d € D

D45 the time it takes to process drug d at stage s a; =

0 o.w.
my: the number of doses needed for each drug d

P,(n,i): probability of wasting the n does of drug d drug 28



OPTIMIZATION MODEL

We first define our Expected Waste cost of a drug with the following:

mg Mg
Ef#[Waste Cost] = ¢4 Z Py(n,i) Eff[Saved Wait] = A4 2 [1 = Pa(n,i)]
n=1 n=1

Then we maximize the difference between Projected Savings and Expected
Waste

maximize 2 E(Eid[Saved Wait] — Ef [Waste Cost])a?,

deD i€eE
Parameters
Sets
A, the value of savings of drug d € D (i.e, (p41+p42) *dollar value of D: set of drugs d (e.g. 50 mg of Taxotere)
patient waiting time E4: set patient eligibility vectors for alld € D
c; the costofdrugd Variables
o 4 1 if we select patient eligibility vectori € E for drug d € D
D45 the time it takes to process drug d at stage s a; =

0 o.w.
my: the number of doses needed for each drug d
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OPTIMIZATION MODEL CONSTRAINTS

* Only can select one eligibility vector for each drug

* All doses indicated in vector must be made if
eligibility vector is selected

* All doses must be made within the time bounds
associated with the eligibility vector
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OPTIMIZATION MODEL CONSTRAINTS
(CONT.)

 Limited number of pharmacists for verification

 Limited number of techs for drug compounding

* No preemptions allowed

* Must complete drug once started
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OUTLINE

« Computation Experiments
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COMPUTATIONAL EXPERIMENTS

* How large is our integer linear program (i.e., number of variables
and constraints)?

* What is the computational time needed to generate inputs and
solve the model?

* How granular should we discretize time and still maintain a
quality solution?
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COMPUTATIONAL EXPERIMENTS

* Time discretization cases: 5 min, 2 min, 1 min

* Scenarios
|. At most one dose of a drug is scheduled
2. 2-5 doses of a drug are scheduled
3. 10 doses of each drug scheduled

Note: We run 10 instances of each scenario in each case with a 2 hour time limit as well as a 1%
optimality gap
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TIME DISCRETIZATION ANALYSIS

Scenario Case Num_ber of Numbe_r of
Variables Constraints

1 5 min 11118 20930
2 min 27048 114181

1 min 53621 438066

2 5 min 11351 21207
2 min 27358 115191

1 min 54061 442966

3 5 min 1377780 21668
2 min 1393749 118996

1 min 1420388 457244
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Scenarios

|. At most one dose of a drug is
scheduled

2. 2-5 doses of a drug are
scheduled

3. 10 doses of each drug scheduled
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TIME DISCRETIZATION ANALYSIS

] Median Load Median Solve i
Scenario Case Scenarios

. Time (sec) Time {se¢) | A¢ most one dose of a drug is
1 > e ° . scheduled
; m 2 >* 2. 2.5 doses of a drug are
1 min 20 3205
2 5 min 5 10 scheduled
2 [ofle 6 160 - 10 doses of each drug scheduled
1 min 21 3195
3 S5 min 6632 85
2 min 6609 123
1 min 6628 309
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TIME DISCRETIZATION ANALYSIS

CPIP-HT Obijectives

-

Cases
Bl 5min
B 2 min
B 1min

1 2
Scenarios
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Scenarios

|. At most one dose of a drug is
scheduled

2. 2-5 doses of a drug are
scheduled

3. 10 doses of each drug scheduled
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COMPUTATIONAL EXPERIMENTS
SUMMARY

* Determined discretizing time to 2 minutes was sufficient for our
problem

* Problem size grows at factorial rate but is bounded in practice
(i.e., never more than 10 doses of the same drug on a
scheduled for a given day)

* Model formulations finds optimal solution providing a
conservative estimate on patient wait time saved
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CONCLUSIONS/FUTURE DIRECTIONS

* Developed a pre-mix optimization model utilizing the
probabilities from the prediction model

» Address time dependencies and interdependences introduced
by hang-by time

» Potential next steps include time dependent reward parameter
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Thank yout!

» Center for Healthcare Engineering
and Patient Safety (CHEPS)

CENTER FOR
« CHEPS Chemo Team HEALTHCARE ENGINEERING & PATIENT SAFETY
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COUNTING ELIGIBILITY VECTORS

2my

My ) where my is the total number of patients

« Total number of vectors = ), ¢p (

scheduled for drug d on a given day

« Given my = 2 for a single drug d, we might have the following vectors
« [00],[1,0], [2,0], [1,1], [1,2], [2,2]

- Total number of vectors = (}) = 6

- However what if we have m, = 10 then the total number of vectors = (%;) = 184,756
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