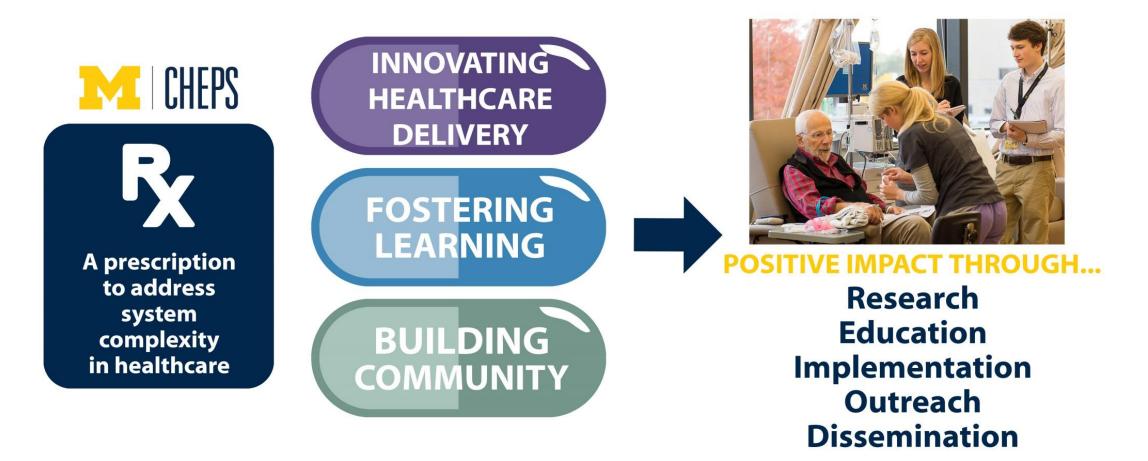
SIMULATING THE FLOW OF PATIENTS WITH AORTIC DISSECTION THROUGH A CARDIAC INTENSIVE CARE UNIT

Amanda D. Moreno-Hernandez, Master's Student


Amy Cohn¹, PhD

Hitinder Gurm², MD

Industrial & Operations Engineering, University of Michigan¹ | Michigan Medicine²

HEALTHCARE ENGINEERING & PATIENT SAFETY

OUTLINE

Research Motivation

Introduction

Problem Statement

Literature Review

Simulation Framework

Analysis

Future Research

RESEARCH MOTIVATION

What is the aortic dissection (AD) patient experience?

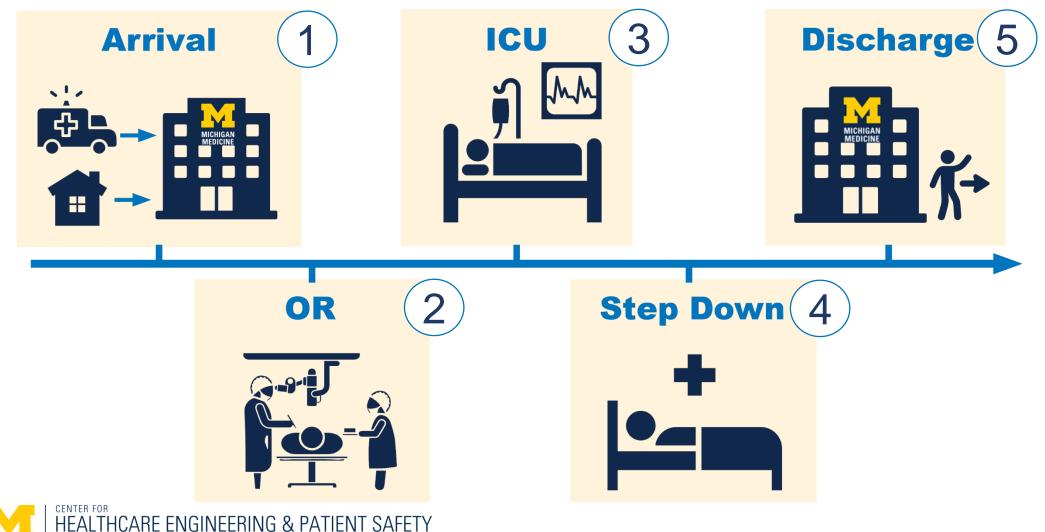
> Ensure adequate capacity for all transfer requests to the Cardiovascular Center (CVC) at Michigan Medicine (MM)

WHAT IS AN AORTIC DISSECTION?

Aortic dissection (AD) is an emergency cardiovascular condition affecting the aorta.

It is the result of a tear in the inner wall of the aorta causing severe internal bleeding and potential death.

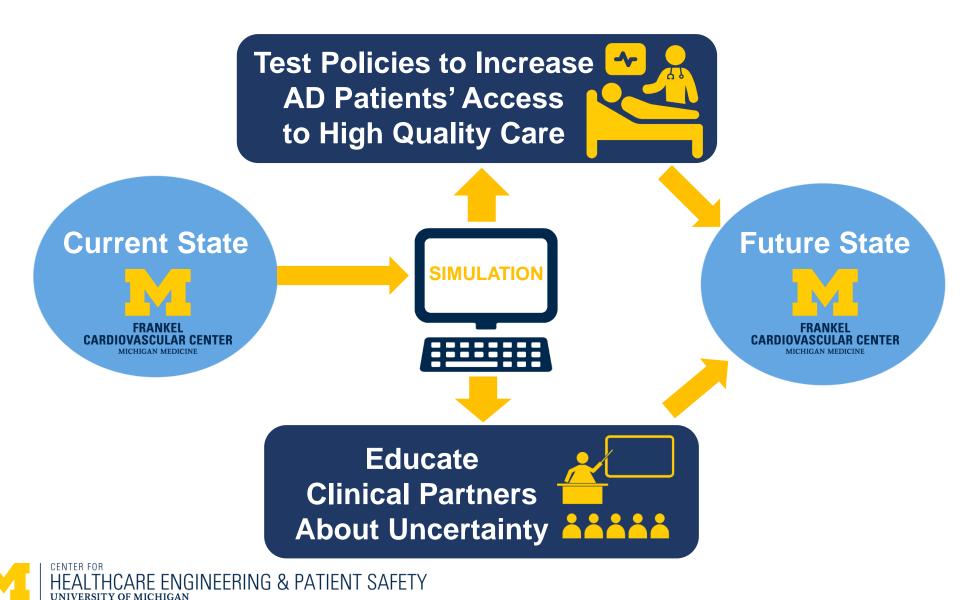
Mortality rate for AD increases 1% per hour [1] and 20% of AD individuals die before reaching the hospital [2]. Aortic dissections are rare, but when they occur, they are medical emergencies.


CARDIOVASCULAR PATIENTS

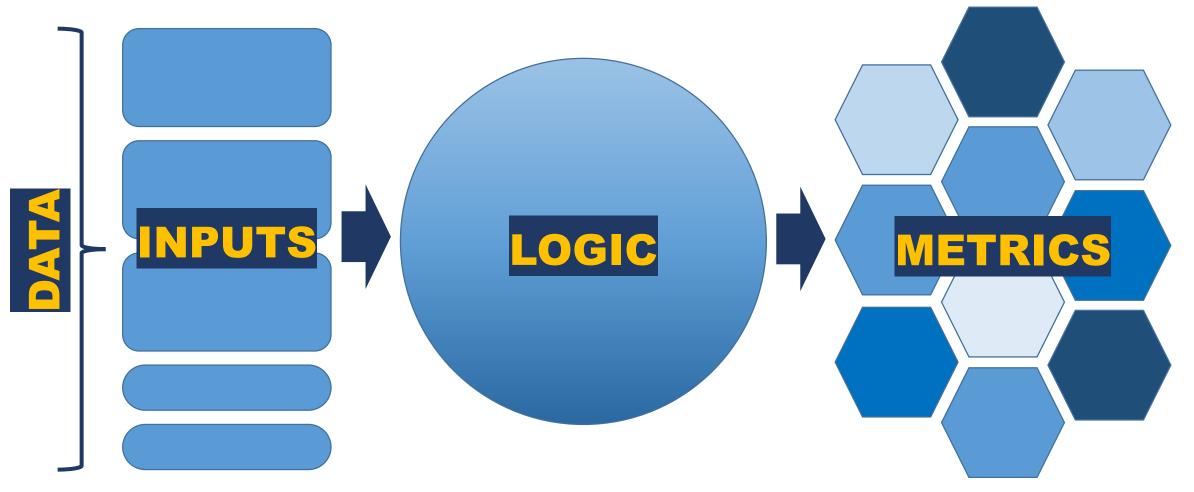
- Cardiovascular disease is the leading cause of death in the US [3].
- By 2030, approximately 40.5% of the US population is projected to have some type of cardiovascular disease [4].
- The most common surgeries in the United States (US) are cardiovascular [3].

INTRODUCTION | PROBLEM STATEMENT | LITERATURE REVIEW | SIMULATION | ANALYSIS | FUTURE RESEARCH CENTER FOR HEALTHCARE ENGINEERING & PATIENT SAFETY ON IVERSITY OF MICHIGAN

PATIENT ARRIVAL STREAM AND FLOW IN CARDIOVASCULAR SURGERY

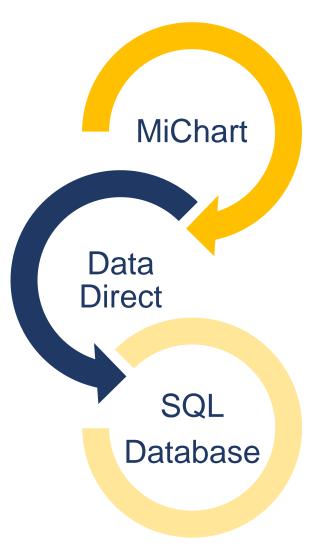

AD TRANSFER DEFERRAL

Preliminary analysis conducted by the CVC staff showed that the most common reason for AD patient deferral when requesting transfer to Michigan Medicine is attributed to unavailable ICU beds.


PROBLEM STATEMENT

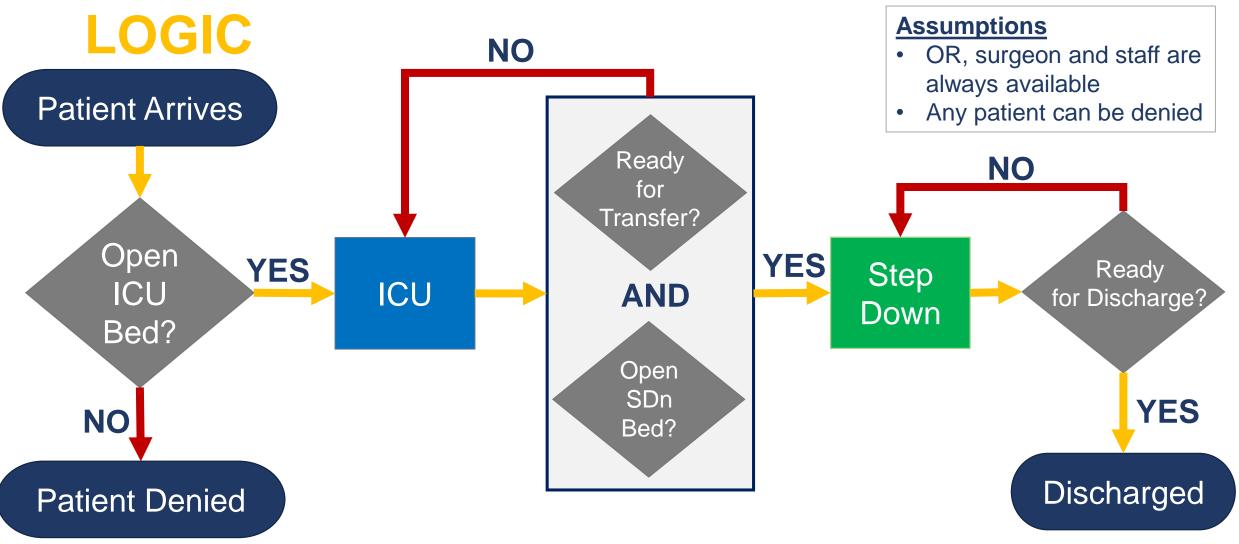
LITERATURE REVIEW

First Author	Reference	Year	Objective/Purpose
Levin, S.	[5]	2011	To test policies to reduce patient's length of stay (LOS) and increase patient throughput.
Marmor, Y.	[6]	2013	To predict minimum bed needs to achieve the high patient service level demanded for the cardiovascular ICU.
Levin, S.	[7]	2015	To estimate patients' wait time while integrating the effect of the transition process (i.e. wait time for a bed to become available) with queuing using embedded regression models.
Kolker, A.	[8]	2009	To establish a quantitative link between the daily load leveling of elective surgeries (i.e. elective schedule smoothing) and ICU diversion of multiple ICU units including cardio ICU.



DATA PRE-PROCESSING

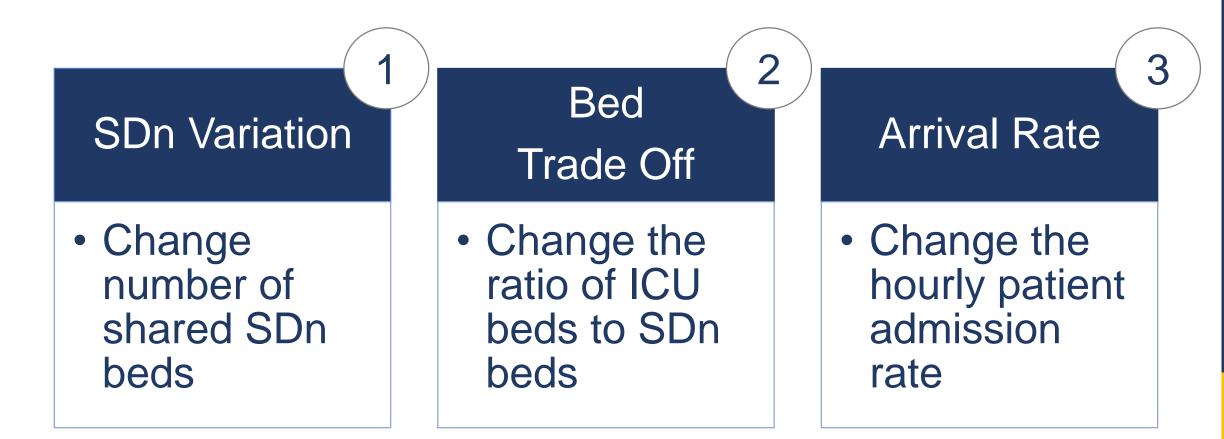
- MiChart, a product of Epic, is Michigan Medicine's patient-centric electronic health record
- Data Direct enables access to clinical data
- SQL Database contains all patients that visited the CVC ICU between Jan 2016 and May 2019


FIXED INPUTS

- Bed Count per Unit
- Time Horizon
- Replications

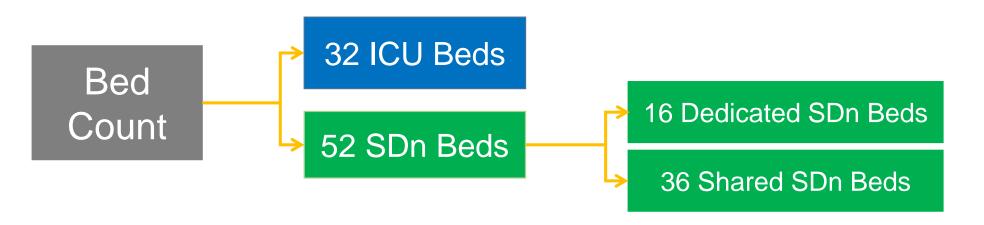
RANDOM INPUTS

- Patient Type
- Arrival Rate
- Service Time per Unit



Ove	sd			
Patients Requesting Care (
Accepted Patients		min		
Declined Patients	mean			
ICU	Stepdown (SDn)	mean		
 Patient LOS Unnecessary days in an ICU bed (SDn status) Bed Utilization 	Patient LOSBed Utilization	med	max	

ANALYSES

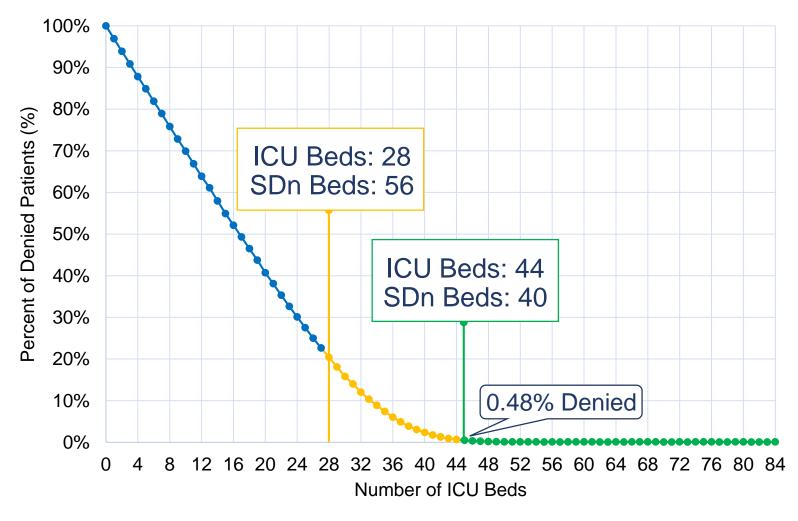


BASE CASE PARAMETERS

- 1 Patient Type
- Arrival Rate = 0.31 patient/hr
- Time Horizon = 1 Year
- Replications = 1,000

- Bernoulli trial for transfer and discharge from respective units
 - P_{ICU Transfer} = 0.22
 - P_{SDn Discharge} = 0.24

ANALYSIS 1: SDN VARIATION


Shared Beds Available	25%	50%	75%	100%
Allocated Stepdown Beds	25	34	43	52
Patient Arrival	2718	2718	2714	2716
Declined Percentage	16%	12%	12%	12%
ICU Average LOS ICU Status	3.94 days	3.93 days	3.93 days	3.93 days
ICU Average LOS SDn status	0.33 days	0.02 days	0 days	0 days
SDn Average LOS	3.68 days	3.98 days	4 days	4 days

- Time Horizon = 1 Year
- Replications = 1,000

- 32 ICU Beds
- 16 Dedicated SD Beds

ANALYSIS 2: BED TRADE OFF

- There are always 84 beds in total
- For every ICU bed added, there is one SDn bed removed
- After 44 ICU beds, the percentage of denied patients becomes less than 1% however cost continues to grow

ICU Daily Cost \$4,300/bed SDn Daily Cost \$1,909/bed

INTRODUCTION | PROBLEM STATEMENT | LITERATURE REVIEW | SIMULATION | ANALYSIS | FUTURE RESEARCH

[9]

ANALYSIS 3: ARRIVAL RATE

Arrival Rate Increased by 30%

Arrival Rate	0.31	0.40	0.52	0.68	0.88
Patient Arrival	2718	3503	4556	5955	7710
Declined Percentage	16.26%	32.51%	47.54%	59.80%	68.88%
ICU Average LOS ICU Status	3.94 days	3.99 days	4.07 days	4.14 days	4.19 days
ICU Average LOS SDn status	0.33 days	0.39 days	0.42 days	0.42 days	0.42 days
SDn Average LOS	3.68 days	3.61 days	3.59 days	3.58 days	3.58 days

- Time Horizon = 1 Year
- 32 ICU Beds
- Replications = 1,000
- 25 SDn Beds

INTRODUCTION | PROBLEM STATEMENT | LITERATURE REVIEW | SIMULATION | ANALYSIS | FUTURE RESEARCH

HEALTHCARE ENGINEERING & PATIENT SAFETY

FUTURE RESEARCH

- Expanding the tool
 - Relaxing assumptions
 - Patient type
 - Admission logic
- Conducting Analysis
 - More Data!!!
 - Collaborator goals: Explore smoothing elective surgery

ACKNOWLEDGEMENTS

MICHIGAN MEDICINE

The Seth Bonder Foundation

PRECISION HEALTH

UNIVERSITY OF MICHIGAN

LTHCARE ENGINEERING & PATIENT SAFETY

AD ICU TEAM

CHEPS STAFFIOE FACULTY & STAFFSPECIAL THANKS TOJulia WarnerJoi-Lynn Mondisa, PhDDonald Richardson, PhDLiz FisherRod CappsLuke Liu

REFERENCES

[1] Criado, Frank J. "Aortic Dissection: A 250-Year Perspective." Ed. Joseph S. Coselli. Texas Heart Institute Journal 38.6 (2011): 694–700.

[2] Farber, Mark A, and Thaniyyah S Ahmad. "Aortic Dissection." Merk Manual, Merck Sharp & Dohme Corp, March 2017.

[3] Birkmeyer JD, Siewers AE, Finlayson EV, Stukel TA, Lucas FL, Batista I, Welch HG, Wennberg DE (2002) Hospital volume and surgical mortality in the United States. N Engl J Med 346(15): 1128–1137

[4] Heidenreich, Paul A., et al. "Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association." Circulation 123.8 (2011): 933-944

[5] Levin, Scott, et al. "Evaluating the effects of increasing surgical volume on emergency department patient access." BMJ quality & safety 20.2 (2011): 146-152.

[6] Marmor, Yariv N., et al. "Recovery bed planning in cardiovascular surgery: a simulation case study." Health care management science 16.4 (2013): 314-327.

[7] Levin, Scott, and Maxim Garifullin. "Simulating wait time in healthcare: accounting for transition process variability using survival analyses." 2015 Winter Simulation Conference (WSC). IEEE, 2015.

[8] Kolker, Alexander. "Process modeling of ICU patient flow: effect of daily load leveling of elective surgeries on ICU diversion." Journal of medical systems 33.1 (2009): 27.

[9] Halpern, Neil A., et al. "Trends in critical care beds and use among population groups and medicare and medicaid beneficiaries in the United States: 2000–2010." Critical care medicine 44.8 (2016): 1490.

Questions?

