

Evaluating Veteran Access to Eye Care Services Using Facility Location Models

Guyi (Michelle) Chen, Adam VanDeusen, Amy Cohn, April Maa INFORMS HAS July 27, 2019

CHEPS

What are we trying to solve?

VA primary care visit

Tech performs eye screening (TECS Program)

- Low-vision/blindness can have debilitating effects
 - Challenge with low-vision and driving
- Prevalence of diabetes in VA patients (11.4%) higher than general US population (7.2%)
 - Diabetes strongly associated with eye disease and vision impairment

- Why VA research?
 - VA is cost-incentivized to reduce barriers to accessing care
 - Patient utilization of care is relatively consistent
- Why this population?
 - Veterans report greater delays in seeking care than non-veterans
 - Eye care is 3rd most utilized service in VA (after primary care and mental health)

Problem Statement

- Goal: Evaluate <u>which locations</u> to offer eye care screenings and <u>what provider type(s)</u> to staff each eye care location
- Assumptions:
 - Patients go to "assigned" clinic for eye care screening
 - One-year time frame
 - Patients have homogeneous screening need (one screening every other year)
- Limitations:
 - Considering eye care screening only (follow-up care not included)
 - No consideration for patients' provider preferences

- Matching problem
 - Deciding locations to offer eye care and how to staff those locations
- Constrained resources
- Multi-criteria decision
 - Consider cost, distance traveled, number of patients seen, etc.

Possible eye care locations

• 25 VA locations in Georgia

Decide

- At which locations do we offer eye care?
- What kind(s) of provider(s) should staff each location?

Assign patients

 Patients from a given zip code assigned to clinic location(s)

Consider scenarios

- Start from current state
- Start from scratch

Map of VA Clinics

Model Overview: Feasibility Constraints

• Patient Capacity

$$\sum_{z \in Z} x_{zc}^t \le v^t * y_c^t \qquad \forall \ c \in C, \ \forall t \in T$$

Demand

$$\sum_{t \in T} \sum_{c \in C} x_{zc}^t \ge n_l * p_z \qquad \forall \ z \in Z$$
$$\sum_{t \in T} \sum_{c \in C} x_{zc}^t \le n_u * p_z \qquad \forall \ z \in Z$$

• Provider Capacity

$$y_c^t \leq g_c^t \qquad \forall t \in T, \forall c \in C$$
$$\sum y_c^t \leq g_c \qquad \forall c \in C$$

 $t{\in}T$

Model Overview: Three objective functions

GINEERING & PATIENT SAFETY

Data Overview

- Patients accessing Georgia VA for (any) care in 2017
 - Approx. 200,000 patients, grouped by zip code
- Clinic locations
 - 25 VA clinics in Georgia
- Driving distance from center of each zip code to each clinic location calculated via Google API
- Budget/costs, provider capacities, and other clinic-specific values obtained from VA
- Model implemented in C++ and solved using CPLEX

Results

Minimum % of Patients Assigned from Each Zip Code

Results: Maximize Patients Assigned

(max dist: 150 miles)

Results

Minimum % of Patients Assigned from Each Zip Code

Results: Minimize Furthest Distance Traveled

Model: Minimize cost

Constraints:

- Max. Distance Traveled: Vary (90-130 miles)
- Minimum Patients: Vary (10K 40K patients)

Results: Minimize Cost

CENTER FOR

UNIVERSITY OF MICHIGAN

HEA

Constraints: Max. Distance Traveled and Minimum Patients

18

- Uncertainty in population distribution
- Two-stage stochastic formulation to maximize the total number of people assigned to all clinics
- First Stage

Open Clinic

Staff Clinic

٠

- Subject to $\sum_{c \in C} \delta_{zc} * y_c \ge 1 \ \forall \ z \in Z$ $y_c^t \le g_c^t * y_c \qquad \forall t \in T, \forall c \in C$ $\sum_{t \in T} y_c^t \le g_c \qquad \forall c \in C$
- Provider Capacity

Stochastic Formulation

- Second Stage
 - Budget Constraint
 - Furthest Traveling Distance Allowed
 - Patient Capacity Requirement
 - Demand Requirement
 - Objective: Maximize the number of patients assigned to all clinics

Practical Challenges

- Physician collaborator would like to use this model and apply it in different (not yet defined) scenarios
 - Current model solved with CPLEX
 - CPLEX requires expensive licensing fee and technical support
- Challenge: find alternative ways for physician to solve model with new scenarios

Conclusions & Next Steps

- Maximizing number of patients assigned is of most interest to clinical collaborators
- Each objective function inherently considers trade-offs
- Tool can be used by VA when evaluating community care integration
- Next...
 - Further explore stochasticity
 - Consider implications for follow-up care
 - Generalize beyond Georgia

Acknowledgements

MICHIGAN ENGINEERING UNIVERSITY OF MICHIGAN

- VA:VISN 7
 - Dr. April Maa
 - Cliff Guyton
- The Seth Bonder Foundation
- Center for Healthcare Engineering and Patient Safety (CHEPS)

- Student team members:
 - Kate Burns
 - Jordan Goodman
 - Malcolm Hudson
 - Matthew Levenson
 - James McAuliffe
 - Muhammed Ugur
 - Dima Chaar

Center for Healthcare Engineering & Patient Safety

cheps-contact@umich.edu

