Resident Scheduling for Pediatric Night Shifts Using OpenSolver

Caroline Owens, William Pozehl, Amy Cohn and Kayla Bronder

Background

- Throughout the year, medical residents rotate on different services to develop their clinical abilities. One common rotation is the Night Team, in which residents cover the inpatient units overnight.
- A Chief Resident is tasked with determining which residents work each night. This task is done by hand, time-consuming, and error-prone. We aim to automate this process to enable faster, improved scheduling.
- We also include Clinic Scheduling in the model to help ease the process of the two interrelated scheduling blocks.

Methods

- We formulate the problem as an integer programming model.
- In collaboration with the Chief Resident, we developed metrics to evaluate schedule quality.
- We implemented the model in Microsoft Excel using the OpenSolver add-in.
- Each month, the Chief Resident provides the inputs for the schedule. These inputs list the residents, their respective start and end dates, and requested days off.
- Using Excel, we solve the model and the resulting schedule is provided to the Chief Resident for review.

Model

Sets

Weeks relative to Peds/MP Interns

Weeks relative to Seniors/EM Interns

- R_P subset group of Pediatrics residents
- subset group of Medicine-Pediatrics residents
- subset group of Emergency Medicine residents
- group of Interns (first-year residents)
- bset group of Seniors (second- to fourth-year residents)

Parameters

- Required number of interns on the team each night
- red number of seniors on the team each night
- mum number of permissible consecutive days working on the team
- um number of permissible consecutive days working on the team
- ω_1 Weight of assigning 2-night sequence
- ω_2 Weight of assigning 6-night sequence

Decision Variables

	Decision variables			
x_{rad}	1 if resident r is assigned activity a on date d	$\forall r \in R, a \in A, d \in D$		
y_{rw}	1 if resident r is assigned to conference on week w	$\forall \ r \in R, w \in W$		
z_{rd}	1 if resident r is assigned to clinic on date d	$\forall r \in R, w \in W$		
f_{rd}	1 if resident r works exactly 2 night shifts over 3-day stretch beginning date d	$\forall r \in R, d \in D$		
m_{rd}	1 if resident r works exactly 6 night shifts over 6-day stretch beginning date d	$\forall r \in R, d \in D$		

Model

Objective Function

To minimize the number of times residents are assigned 2-day or 6-day Night Shift sequences.

$$\min \sum_{r \in R} \sum_{d \in D} \omega_1 f_{rd} + \omega_2 m_{rd}$$

Rules

Activity Limit: Each shift sequence must contain at least 2 nights.

$$\sum_{a \in A} x_{rd} = 1, \ \forall r \in R, d \in D$$

Coverage Requirements: The night team requires: (1) zero or two interns every day, and (2) two, three or four seniors every day.

$$\sum_{r \in I} x_{r(nt)d} = a_i, \forall d \in D$$

$$\sum_{r \in S} x_{r(nt)d} = a_s, \forall d \in D$$

Clinic Requirements: The residents must also be scheduled for clinics, separate from the obligation to the Nights team. Each resident requires 1 clinic day (1) when their clinic is available. It must be on a day before they begin a Night sequence (2).

$$\sum_{d \in C_r} z_{rd} = 1, \ \forall r \in R$$
$$z_{rd} \leq x_{r(nt)(d+1)}, \forall r \in R, d \in D$$

Minimum Work Sequences: Every least 2 consecutive nights.

Minimum Work Sequences: Every
$$x_{r(nt)0} \le x_{r(nt)(1)}, \forall r \in R$$
 resident's Nights sequence must be at $x_{r(nt)d} \le x_{r(nt)(d-1)} + x_{r(nt)(d+1)}, \forall r \in R, d \in (1, ..., numDates - 2)$ least 2 consecutive nights. $x_{r(nt)(numDates - 1)} \le x_{r(nt)(numDates - 2)}, \forall r \in R$

Maximum Work Sequences: Every resident's Nights sequence must not exceed 6 consecutive nights.

$$\sum_{\substack{d=d'\\d'+M^{do}}}^{d'+M^{nt}} x_{r(nt)d} \leq M^{nt}, \ \forall r \in R, d' \in (0, ..., numDates - M^{nt} - 1)$$

$$\sum_{\substack{d=d'\\d'+M^{do}}}^{d'+M^{do}} x_{r(nt)d} \leq M^{do}, \ \forall r \in R, d' \in (0, ..., numDates - M^{do} - 1)$$

Emergency Medicine Conferences: Residents must attend at least one of their conferences during the twoweek rotation. Conference is on a Tuesday and Wednesday.

$$\sum_{w \in W} y_{rw} \ge 1, \ \forall r \in E$$

$$y_{rw} \le w_{r(do)(Tues_w)}, \ \forall r \in E, w \in W_i$$

$$y_{rw} \le w_{r(do)(Wed_w)}, \ \forall r \in E, w \in W_i$$

Preferred Durations of Work Sequences: Ideally, residents should work between 3 and 5 night shifts in a row.

$$f_{r0} + m^{nt} - 1 \ge x_{r(nt)0} + x_{r(nt)1} - x_{r(nt)2}, \forall r \in R$$

$$f_{rd} + m^{nt} - 1 \ge -x_{r(nt)(d-1)} + x_{r(nt)d} + x_{r(nt)(d+1)} - x_{r(nt)(d+2)},$$

$$\forall r \in R, d \in (0, ..., numDates - m^{nt} - 1)$$

$$f_{r(numDates-2)} + m^{nt} - 1$$

$$\ge -x_{r(nt)(numDates-3)} + x_{r(nt)(numDates-2)} + x_{r(nt)(numDates-1)},$$

$$\forall r \in R$$

$$d + M^{nt} - 1$$

$$m_{rd} + M^{nt} - 1 \ge \sum_{d'=d} x_{r(nt)d'},$$

$$\forall r \in R, d \in (0, ..., numDates - M^{nt} - 1)$$

Preferred Shift Equity: Ideally, residents should have the same amount of shifts per block.

$$\delta_r \ge \bar{x} - \sum_{d \in D} x_{r(nt)d}, \forall r \in R$$
$$\delta_r \ge \sum_{d \in D} x_{r(nt)d} - \bar{x}, \forall r \in R$$

Solution Approach

 We formulated a linear programming model and implemented in a Microsoft Excel workbook, using the OpenSolver add-in.

Sample Inputs

	Ivaille	Piogram	Cillic	Start Date	Liiu Date	LD JIII13	OB SIIIILS			
Intern 1	Cartwright	PEDS	Briarwood	27-Apr	10-May	8	12			
Intern 2	Rompca	PEDS	Northville	27-Apr	10-May	8	12			
Intern 3	Jarrett	PEDS	Canton	12-May	25-May	8	12			
Intern 4	Sliwicki	PEDS	EAA	12-May	25-May	8	12			
	27-Apr	28-Apr	29-Apr	30-Apr	1-May	2-May	3-May			
	6		N. 4		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	T I I	- • •			

Max Interns	2	2	2	0	0	2	2		
Min Seniors	0	0	0	0	3	2	2		
Max Seniors	0	0	0	0	4	3	3		
Min Number Consecutive Shifts				2					
Max Number Consecutive Shifts				6					
Daily Resident Activity Limit							1		
First Day in Planning Horizon				27-Apr					

Sample Outputs

			_				
Activity Report	27-Apr	28-Apr	29-Apr	30-Apr	1-May	2-May	3-May
	Saturday	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday
Min Interns	Night Team	Night Team	Night Team	Day Off	Day Off	Night Team	Night Team
Max Interns	Night Team	Night Team	Night Team	Day Off	Clinic Day	Night Team	Night Team
Min Seniors	Day Off	Day Off	Day Off	Day Off	Day Off	Day Off	Day Off
Max Seniors	Day Off	Day Off	Day Off	Day Off	Day Off	Day Off	Day Off

Impact

- By using linear programming to develop the schedule, assignment equity and request satisfaction improved.
- Moreover, the tool accommodates manipulation to better fit the Chief Resident's ideal schedule.
- As the Chief Resident gained experience with the tool, more schedule metrics were identified to further improve quality.
- Our program generates full schedules rapidly (solve time < 15 s).
- We derived high impact results from mathematically simple, straight-forward modeling with an undergraduateled project team.
- Based on mutual satisfaction from the project we fostered long-term collaboration with the medical school.

Acknowledgements

We thank the following organizations for funding this work:

Min Interns

Planning Horizon Duration

First Valid Conference Day

2-day Work Sequence Weight

6-day Work Sequence Weight

University of Michigan Medical School

