Scheduling Resident Shifts in the C.S. Mott Children's Hospital Emergency Dept Kristine Wang, Riley McKeown, William Pozehl, Amy Cohn, Marie Pfarr

Formulate a

mathematical

model

Problem Statement

Background

The C.S. Mott Pediatric Emergency Department (ED) at Michigan Medicine is:

- A Level 1 Pediatric Trauma Center
- Visited by 25,000 patients per year
- Staffed by 5 residency programs

Importance of Schedule Quality

Poor quality schedules can negatively impact:

- Workflow
- Training quality and burnout rates
- Patient access, care quality, safety, and satisfaction

Traditional Approach

Hand-made schedule built by chief resident or administrator, requiring around 20 hours per month

Renefits	
Denents	

Intimate Knowledge Administrative Consolidation Drawbacks

Time-Consuming Cognitively Demanding

The Challenge

Scheduling residents in the ED involves an overwhelming number of governing rules and preferences the scheduler must abide and consider. Additionally, the schedule that is the best based on one metric may not be the best based on another metric.

Research Goals

- Work with chief residents to learn the scheduling rules and understand how trade-offs should be made between metrics
- Formulate a mathematical model and build a computerized tool which generates high-quality schedules

Solution Approach

Encode in

C++ using

CPLEX

Review

schedule

and

metrics

Decisions

Do we assign a resident *r* to shift type *s* on date *d*?

 $x_{rsd} \in \{0, 1\},$

Constraints

All rules must be satisfied for a schedule to be considered feasible

All shifts require	a resident
10 hour rest rule	e (ACGME)
Resident work c	onflicts (confere
Varying working	dates and time
Certain shifts ca	n only be staffed
Residents can or	nly work 5 cons
And more	

Example: Work-Rest Rule

Residents must get at least 10 hours off-duty between ending one shift and beginning another

$$x_{rsd}$$
 +

$$x_{rs'd'} \leq 1$$
,

 $(s',d') \in$ *{within* **10** *hrs of (s,d)}*

Metrics

Determining an acceptable balance of the metrics can be difficult as some have an impact on the overall schedule and others impact individual residents. Additionally, the needs of the chief resident can shift from month to month.

Number of Post Continuity Clinic Shifts Assigned Number of Bad Sleep Patterns Assigned Equitable Number of Assignments per Resident Flex Shift Coverage Vacation Requests Denied

And more...

Below is a sample metric report, used to evaluate schedule quality.

Resident Name	Longest Work Period	Number of Shifts	Number of Night Shifts	Number of Post-CC Shifts	Number of Bad Sleep Patterns
Resident_A	4	9 (9,11)	3 (0, 4)	0 (0, 0)	0
Resident_B	2	7 (7, 9)	3 (0, 4)	0 (0, 0)	0
Resident_C	2	9 (9,11)	3 (0, 4)	0 (0, 0)	0

 $\forall r \in R, s \in S, d \in D$

rences and clinics) off-requests ed by seniors

secutive days

$\forall \mathbf{r} \in \mathbf{R}, \mathbf{s} \in \mathbf{S}, \mathbf{d} \in \mathbf{D}$

Effect on Scheduling Effort

Effect on Bad Sleep Patterns

Effect on Post-Continuity Clinic Shifts

Conclusion

- Increased adaptability based on feedback
- Improved schedule quality

We thank the University of Michigan Department of Pediatrics, and the following organizations for sponsoring this work:

Impact/Results

• Decreased production time of each schedule

Future Work

• Formulating more metrics to better evaluate schedule quality • Further automation of the schedule making process • Creation of tools to aid chief resident in reviewing the schedule

Acknowledgements

University of Michigan **Medical School**

