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Background J. Fessler

I Forward problem (data acquisition):

Scene
Objects

physics
x

−−−−−−−→ Imaging
System → raw data

y

SPECT, PET, X-ray CT, MRI, optical
I Inverse problem (image formation):

Acquire
Data

raw data
y
−−−→ Reconstruct

Images → images
x̂

I Image reconstruction topics: physics models, measurement statistical models,
regularization / object priors, optimization.
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Generations of medical image reconstruction methods J. Fessler

1. 70’s “Analytical” methods (integral equations)
FBP for SPECT / PET / X-ray CT, IFFT for MRI, ...

2. 80’s Algebraic methods (as in “linear algebra”)
Solve y = Ax

3. 90’s Statistical methods
• LS / ML methods
• regularized / Bayesian methods

4. 00’s Compressed sensing methods
(mathematical sparsity models)

5. 10’s Adaptive / data-driven methods
machine learning, deep learning, ...
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Improving X-ray CT image reconstruction J. Fessler

• A picture is worth 1000 words
• (and perhaps several 1000 seconds of computation?)

Thin-slice FBP ASIR (denoise) Statistical
Seconds A bit longer Much longer

Today’s talk: less about computation, more about image quality
Right image used edge-preserving regularization
Safety / health relevance: X-ray dose and diagnostic accuracy 4 / 50



History: Milestones in iterative image reconstruction J. Fessler

Commercial availability of iterative methods for human scanners per FDA 510(k)
dates:
I PET/SPECT

Unregularized OS-EM ≈ 1997
I X-ray CT

Regularized MBIR [2011-11-09 for GE Veo]
(Installed at UM in Jan. 2012)

I PET
Regularized EM variant (Q.Clear) 2014-03-21

I MRI
Compressed sensing! (Sparsity-based regularization)
[2017-01-27 for Siemens Cardiac Cine]
[2017-04-20 for GE HyperSense]

I Ultrasound?
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Accelerating MR imaging using adaptive regularization J. Fessler

(a) 4× under-sampled MR k-space
(b) zero-filled reconstruction
(c) “compressed sensing” reconstruction with TV regu-
larization
(d) adaptive dictionary learning regularization [1,
Fig. 10]

Safety / health
relevance:
◦ scan time
◦ motion
◦ image quality
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Outline J. Fessler
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Convolutional adaptive regularizers
Blind dictionary learning

Summary
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Ill-posed inverse problems J. Fessler

y = Ax + ε

y : measurements ε : noise
x : unknown image A : system matrix (typically wide)

I compressed sensing (e.g., MRI) (A “random” rows of DFT)

ky

kx
I deblurring (restoration) (A Toeplitz)
I in-painting (A subset of rows of I)
I denoising (not ill posed) (A = I)
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Why under-sample? J. Fessler

Why under-sample in MRI?
I Reduce scan time (?)
• Patient comfort
• Scan cost / throughput
• Motion artifacts (Philips at ISMRM 2017)

I Improve spatial resolution (collect higher k-space lines)
I Improve scan diversity for quantitative MRI
I Improve temporal resolution trade-off in dynamic MRI

Why under-sample or reduce intensity in CT?
I Reduce X-ray dose

(But under-sampling leads to ill-posed inverse problems...)
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Inverse problems via MAP estimation J. Fessler

Unknown
image

x
→ System model

p(y | x) → Data
y → Estimator →

Recon.
image

x̂

If we have a prior p(x), then the MAP estimate is:

x̂ = arg max
x

p(x | y) = arg max
x

log p(y | x) + log p(x) .

For gaussian measurement errors and a linear forward model:

− log p(y | x) ≡ 1
2 ‖y − Ax‖2W

where ‖y‖2W = y ′W y and W−1 = Cov{y | x} is known
(A from physics, W from statistics)
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Priors for MAP estimation J. Fessler

I If all images x are “plausible” (have non-zero probability) then

p(x) ∝ e−R(x) =⇒ − log p(x) ≡ R(x)

(from fantasy / imagination / wishful thinking / data)

I MAP ≡ regularized weighted least-squares (WLS) estimation:

x̂ = arg max
x

log p(y | x) + log p(x)

= arg min
x

1
2 ‖y − Ax‖2W + R(x)

I A regularizer R(x), aka log prior, is essential for high-quality solutions to
ill-conditioned / ill-posed inverse problems.

I Why ill-posed? Often high ambitions...
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Classical regularizers (“hand crafted”) J. Fessler

I Tikhonov regularization (IID gaussian prior)
I Roughness penalty (Basic MRF prior)
I Sparsity in ambient space
I Edge-preserving regularization
I Total-variation (TV) regularization
I Black-box denoiser like NLM
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Edge-preserving regularization J. Fessler

Neighboring pixels tend to have similar values except near edges:

R(x) = β
∑

j
ψ(xj − xj−1)

Potential function ψ:

-3 -1 0 1 3

0

1

 

• Equivalent to improper prior (agnostic to DC value)
• Accounts for spatial correlations, but only very locally
• Used clinically now for low-dose X-ray CT image reconstruction
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Total-variation (TV) regularization J. Fessler

Neighboring pixels tend to have similar values except near edges (“gradient sparsity”):

R(x) = βTV(x) = β ‖∆x‖1
= β

∑
j
|xj − xj−1|

Potential function ψ:

-1 0 1

0

1

 

I Equivalent to improper prior (agnostic to DC value)
I Accounts for correlations, but only very locally
I Well-suited to piece-wise constant Shepp-Logan phantom!
I Used in many academic publications...
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Many more “conventional” regularizers / priors J. Fessler

I Transforms: wavelets, curvelets, . . .
I Markov random field models
I Graphical models
I . . .

All “hand crafted” ...
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Adaptive regularization methods for inverse problems J. Fessler

I Data
I Population adaptive methods (e.g., X-ray CT)
I Patient adaptive methods (e.g., dynamic MRI?)

I Spatial structure
I Patch-based models
I Convolutional models

I Regularizer formulation
I Synthesis (dictionary) approach
I Analysis (sparsifying transforms) approach

Many options...
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Outline J. Fessler
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X-ray CT with learned sparsifying transforms J. Fessler

I Data
I Population adaptive methods
I Patient adaptive methods

I Spatial structure
I Patch-based models
I Convolutional models

I Regularizer formulation
I Synthesis (dictionary) approach
I Analysis (sparsifying transform) approach
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Patch-wise transform sparsity model J. Fessler

Assumption: if x is a plausible image, then each ΩPmx is sparse.
I Pmx extracts the mth of M patches from x
I Ω is a square sparsifying transform matrix
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Sparsifying transform learning (population adaptive) J. Fessler

Given training images x1, . . . , xL from a representative population, find transform Ω∗
that best sparsifies their patches:

Ω∗ = arg min
Ω unitary

min
{z l,m}

L∑
l=1

M∑
m=1
‖ΩPmx l − z l ,m‖22 + α ‖z l ,m‖0

I Encourage aggregate sparsity, not patch-wise sparsity
(cf K-SVD [2])

I Non-convex due to unitary constraint and ‖·‖0
I Efficient alternating minimization algorithm [3]
• z update is simply hard thresholding
• Ω update is an orthogonal Procrustes problem (SVD)
• Subsequence convergence guarantees [3]
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Example of learned sparsifying transform J. Fessler

3D X-ray training data Parts of learned sparsifier Ω∗

(2D slices in x-y, x-z, y-z, from 3D image volume)
8× 8× 8 patches =⇒ Ω∗ is 83 × 83 = 512× 512

top 8× 8 slice of 256 of the 512 rows of Ω∗ ↑ 22 / 50



Regularizer based on learned sparsifying transform J. Fessler

Regularized inverse problem [4]:

x̂ = arg min
x
‖Ax − y‖2W + βR(x)

R(x) = min
{zm}

M∑
m=1
‖Ω∗Pmx − zm‖22 + α ‖zm‖0 .

Ω∗ adapted to population training data

Alternating minimization optimizer:
I zm update is simple hard thresholding
I x update is a quadratic problem: many options

Linearized augmented Lagrangian method (LALM) [5]
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Example: low-dose 3D X-ray CT simulation J. Fessler

X. Zheng, S. Ravishankar,
Y. Long, JF:
IEEE T-MI, June 2018 [4]

FDK

FDK

PWLS-EP

PWLS-EP

PWLS-ULTRA

PWLS-ULTRA
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3D X-ray CT simulation Error maps J. Fessler

0

100

FDK Error

0

100

PWLS-EP Error

0

100

PWLS-ULTRA Error

RMSE in HU
X-ray Intensity FDK EP ST Ω∗ ULTRA ULTRA-{τj}

1× 104 67.8 34.6 32.1 30.7 29.2
5× 103 89.0 41.1 37.3 35.7 34.2

I Physics / statistics provides dramatic improvement
I Data adaptive regularization further reduces RMSE
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Union of Learned TRAnsforms (ULTRA) J. Fessler

Given training images x1, . . . , xL from a representative population, find a set of
transforms

{
Ω̂k
}K

k=1
that best sparsify image patches:

{
Ω̂k
}

= arg min
{Ωk unitary}

min
{kl,m∈{1,...,K}}

min
{z l,m}

L∑
l=1

M∑
m=1

∥∥∥Ωkl,mPmx l − z l ,m
∥∥∥2
2

+ α ‖z l ,m‖0

I Joint unsupervised clustering / sparsification
I Further nonconvexity due to clustering
I Efficient alternating minimization algorithm [6]
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Example: 3D X-ray CT learned set of transforms J. Fessler

Class 1 Class 2 Class 3 Class 4 Class 5

X. Zheng, S. Ravishankar, Y. Long, JF: IEEE T-MI, June 2018 [4]
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Example: 3D X-ray CT ULTRA for chest scan J. Fessler

FDK PWLS-EP PWLS-ULTRA

Zheng et al., IEEE T-MI, June 2018 [4]
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X-ray CT with learned convolutional filters J. Fessler

I Data
I Population adaptive methods
I Patient adaptive methods

I Spatial structure
I Patch-based models
I Convolutional models

I Regularizer formulation
I Synthesis (dictionary) approach
I Analysis (sparsifying transform) approach

Drawback of basic patch-based methods:
512× 512× 512 3D X-ray CT image volume
8× 8× 8 patches
=⇒ 5123 · 83 · 4 = 256 Gbyte of patch data for stride=1
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Convolutional sparsity model J. Fessler

Assumption: There is a set of filters {hk}Kk=1
such that the images {hk ∗ x} are sparse for a plausible image x.
I For more plausible images, {hk ∗ x} is more sparse.
I ∗ denotes convolution
I Inherently shift invariant and no patches

Example (hand crafted filters):

1 90

1

60

1 6

1

6

1 90

1

60
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Sparsifying filter learning (population adaptive) J. Fessler

Given training images x1, . . . , xL from a representative population, find filters
{

ĥk
}K

k=1
that best sparsify them:{

ĥk
}

= arg min
{hk}∈H

min
{z l,k}

L∑
l=1

K∑
k=1
‖hk ∗ x l − z l ,k‖22 + α ‖z l ,k‖0

I To encourage filter diversity:
• H =

{
H : HH ′ = I

}
, H = [h1 . . . hK ]

• cf. tight-frame condition
∑K

k=1 ‖hk ∗ x‖22 ∝ ‖x‖
2
2

I Encourage aggregate sparsity, period
I Non-convex due to constraint H and ‖·‖0
I Efficient alternating minimization algorithm [7]
• z update is simply hard thresholding
• Filter update uses diagonal majorizer, proximal map (SVD)
• Subsequence convergence guarantees [7]
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Examples of learned sparsifying filters J. Fessler

2D X-ray CT training data and learned 5× 5 sparsifying filters
{

ĥk
}
[7]:

α = 10−4 α = 2×10−3
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Regularizer based on learned sparsifying filters J. Fessler

Regularized inverse problem [7]:

x̂ = arg min
x�0

‖Ax − y‖2W + βR(x)

R(x) = arg min
{zk}

K∑
k=1

∥∥∥ĥk ∗ x − zk
∥∥∥2
2

+ α ‖zk‖0 .

{
ĥk
}
adapted to population training data

Block proximal gradient with majorizer (BPG-M) optimizer:
I zk update is simple hard thresholding
I x update is a quadratic problem: diagonal majorizer

I. Y. Chun, JF, 2018, arXiv 1802.05584 [7]
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Example: sparse-view 2D X-ray CT simulation J. Fessler

Tr
ue

FB
P

EP

Ad
ap
tiv

e
CA

O
L
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Quantitative results J. Fessler

123 views (out of usual 984) =⇒ 8× dose reduction

RMSE (in HU):
FBP 82.8
EP 40.8

Adaptive filters 35.2

I Physics / statistics provides dramatic improvement
I Data-adaptive regularization further reduces RMSE

36 / 50



Extension to multiple layers (cf CNN) I J. Fessler

Convolutional sparsity model: hk ∗ x is sparse for k = 1, . . . ,K1
Learning 1 “layer” of filters:

{ĥ[1]
k } = arg min

{h[1]
k }∈H

min
{z [1]

l,k}

L∑
l=1

K1∑
k=1

∥∥∥h[1]
k ∗ x l − z [1]

l ,k

∥∥∥2
2

+ α
∥∥∥z [1]

l ,k

∥∥∥
0
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Extension to multiple layers (cf CNN) II J. Fessler

Learning 2 layers of filters [7]:(
{ĥ[1]

k }, {ĥ
[2]
k }
)

= arg min
{h[1]

k },{h
[2]
k }∈H

min
{z [1]

l,k}
min
{z [2]

l,k}

L∑
l=1

K1∑
k=1

∥∥∥h[1]
k ∗ x l − z [1]

l ,k

∥∥∥2
2

+ α
∥∥∥z [1]

l ,k

∥∥∥
0

+
L∑

l=1

K2∑
k=1

∥∥∥h[2]
k ∗

(
Pkz [1]

l

)
− z [2]

l ,k

∥∥∥2
2

+ α
∥∥∥z [2]

l ,k

∥∥∥
0

Here Pk is a pooling operator for the output of first layer
Block proximal gradient with majorizer (BPG-M) optimizer
I. Y. Chun, JF, 2018, arXiv 1802.05584 [7]
Use multi-level learned filters as (interpretable?) regularizer for CT.
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MR with adapted dictionary J. Fessler

I Data
I Population adaptive methods
I Patient adaptive methods

I Spatial structure
I Patch-based models
I Convolutional models

I Regularizer formulation
I Synthesis (dictionary) approach
I Analysis (sparsifying transform) approach
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Patch-wise dictionary sparsity model J. Fessler

Assumption: if x is a plausible image, then each patch has
Pmx ≈ Dzm,

for a sparse coefficient vector zm. (Synthesis approach.)
I Pmx extracts the mth of M patches from x
I D is a (typically overcomplete) dictionary for patches
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MR reconstruction using adaptive dictionary regularizer J. Fessler

Dictionary-blind MR image reconstruction:

x̂ = arg min
x

1
2 ‖y − Ax‖22 + βR(x)

R(x) = min
D∈D

min
Z ′∈C

M∑
m=1

(
‖Pmx −Dzm‖22 + λ2 ‖zm‖0

)
where Pm extracts mth of M image patches.
In words: of the many images...
Alternating (nested) minimization:
I Fixing x and D, update each row of Z = [z1 . . . zM ] sequentially via

hard-thresholding.
I Fixing x and Z , update D using SOUP-DIL [8].
I Fixing Z and D, updating x is a quadratic problem.
• Efficient FFT solution for single-coil Cartesian MRI.
• Use CG for non-Cartesian and/or parallel MRI.

I Non-convex, but monotone decreasing and some convergence theory [8].
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2D CS MRI results I J. Fessler

Fully Sampled Zero-Filled SOUP-DILLO-MRI

Sampling (2.5×) Initial D Learned real{D} imag{D}

6× 6 patches
D ∈ C62×144

[8]
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2D CS MRI results II J. Fessler

Iteration Number

1 20 40 60 80 100

P
S

N
R

 (
d

B
)

24

26

28

30

32

34

36

38

SOUP-DILLO MRI

SOUP-DILLI MRI

(SNR compared to fully sam-
pled image.)
Using ‖zm‖0 leads to higher
SNR than ‖zm‖1.
Adaptive case is non-convex
anyway...
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2D CS MRI results III J. Fessler

(a) (b) (c) (d) (e) (f) (g)

Im. Samp. Acc. 0-fill Sparse
MRI PANO DLMRI SOUP-

DILLI
SOUP-
DILLO

a Cart. 7x 27.9 28.6 31.1 31.1 30.8 31.1
b Cart. 2.5x 27.7 31.6 41.3 40.2 38.5 42.3
c Cart. 2.5x 24.9 29.9 34.8 36.7 36.6 37.3
c Cart. 4x 25.9 28.8 32.3 32.1 32.2 32.3
d Cart. 2.5x 29.5 32.1 36.9 38.1 36.7 38.4
e Cart. 2.5x 28.1 31.7 40.0 38.0 37.9 41.5
f 2D rand. 5x 26.3 27.4 30.4 30.5 30.3 30.6
g Cart. 2.5x 32.8 39.1 41.6 41.7 42.2 43.2

Ref. [9] [10] [1] [8] [8]
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2D CS MRI results IV J. Fessler

DLMRI PANO FDLCP SOUP-DILLO
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[1] [10] [11] [8]

Summary: 2D static MR reconstruction from under-sampled data
with adaptive dictionary learning and convergent algorithm,
faster than K-SVD approach of DLMRI.
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Summary J. Fessler

I Data-driven / adaptive regularization
• Beneficial for low-dose CT and under-sampled MRI reconstruction
• Dictionary atom structure (e.g., low rank) further helpful for dynamic MRI
• Block proximal methods provide reasonably computational efficiency
• Convergence theory (unlike KSVD)

I Future work:
• Synthesis (e.g., dictionary) vs analysis (e.g., transform learning) formulations
Begs for some principled model comparison...
• Online methods for reduced memory, better adaptation [12–15]
• Adaptive methods versus “deep” methods?
• Prospective use
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This summer... J. Fessler

June 2018 special issue of IEEE Trans. on Medical Imaging [16]:
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