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We aimed to compare different linear and non-linear statistical models to predict
deceased donor organ yield. A model to accurately predict deceased donor organ
yield can serve as an aid to assess organ procurement performance and forecast
future organ availability.
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The Health Resource and Services Administration and the Centers for Medicare and
Medicaid Services have focused in increasing organ yield to reduce the gap between
the supply and demand of organs in the U.S.1-2
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Figure 5

Mean absolute error (MAE) of best performing statistical models.3 A BART
resulted in the lowest error on predicting the number of organs transplanted per
deceased donor.

Relationships Among Deceased Donor Organ Yield and Predictors

Figure 6

Partial dependence plots of selected predictors. Non-linear positive and negative,
and more complex relationships between deceased donor organ yield and its
predictors were identified.

• Higher predictive accuracy for deceased donor organ yield was achieved.
• A BART would improve prediction from at least 63 organs per 1000 donors

(compared to an ordinary least squares regression1) to at most 120 organs
per 1000 donors (compared to an ordinal logistic regression2).

*OPTN: Organ Procurement and Transplantation Network

2008

• Selck and coauthors created the first predictive model for organ 
yield using ordinary least squares regression models.1

2011

• Messersmith and coauthors extended Selck et al.’s work using 
multivariate logistic regression models to predict organ-specific 
likelihood of donation.2

2018

• We extend this work by modeling the organ yield as counts and 
developing a non-linear model to predict organ yield.

Development of predictive models for organ yield
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Figure 4

The statistical models were parameterized using data from the OPTN* from 2000
to 2016.4 We used 80% of the data for derivation in a cross-validation analysis
and the remainder of the data as a validation set. The cross-validation analysis
was replicated 50 times and the hold-outs consisted of 20% of the derivation
cohort.

Linear models and 
extensions3

• Ordinary least squares (OLS)

• Ordinal logistic regression (OLR)

• Generalized linear model (GLM)

• General additive model (GAM)

• Multivariate adaptive regression 
splines (MARS)

• Artificial neural networks (ANN)

Tree-based models3

• Classification and regression trees 
(CART)

• Bootstrap aggregated CART

• Random forest

• Boosted CART (BOOSTCART)

• Bayesian additive regression trees 
(BART)

Figure 3

The accuracy to predict deceased donor organ yield of several linear and non-linear
statistical models was compared. The initial set of predictors for deceased donor
organ yield were derived from published studies.1-2
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