

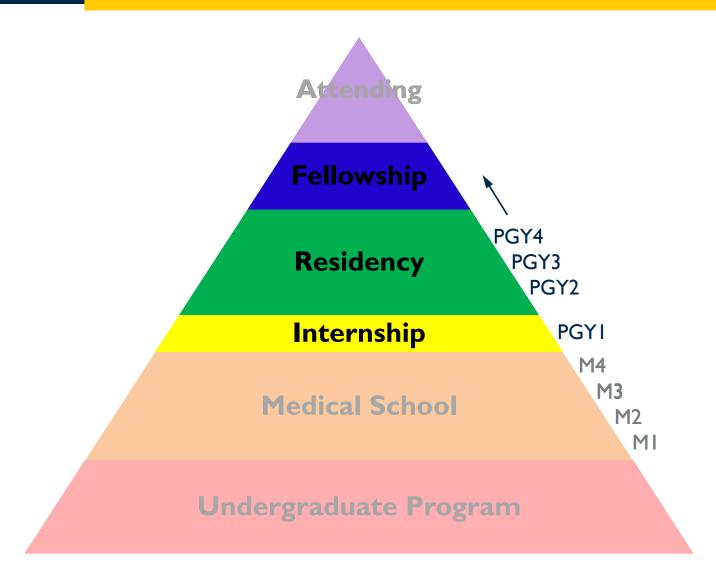
Linear Programming Tools for Scheduling Trainees in Healthcare

William Pozehl Rishindra Reddy MD F. Jacob Seagull PhD Mark Daskin PhD Amy Cohn PhD Janice Davis Nate Janes Yicong Zhang

Presentation Outline

- Background
- Motivation
- Model Formulation
- Model Implementation
- Conclusions and Future Work

Presentation Outline

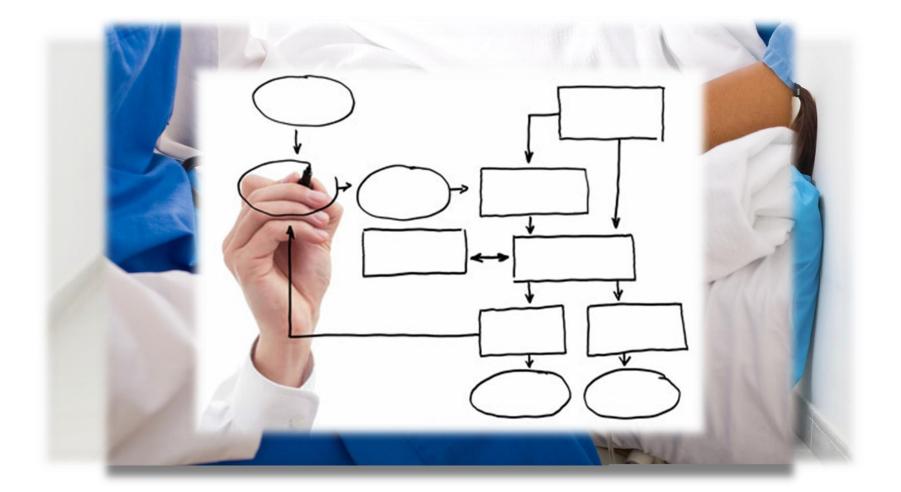

• Background

- Motivation
- Model Formulation
- Model Implementation
- Conclusions and Future Work

Healthcare Training Basics

ENGINEERING UNIVERSITY OF MICHIGAN

Healthcare Training at Michigan



MICHIGAN ENGINEERING UNIVERSITY OF MICHIGAN

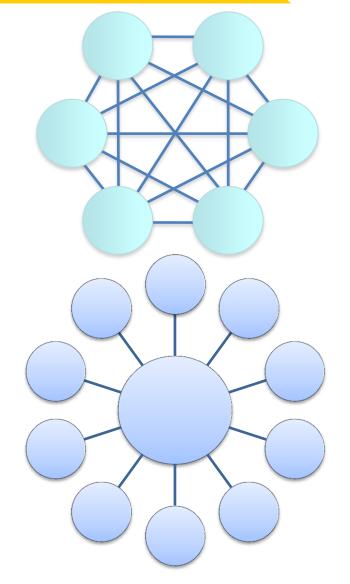
Importance of Scheduling

Who does the Scheduling?

- Program dependent
 - Chief Resident
 - Faculty (Program Director)
 - Senior Administrative Staff

Presentation Outline

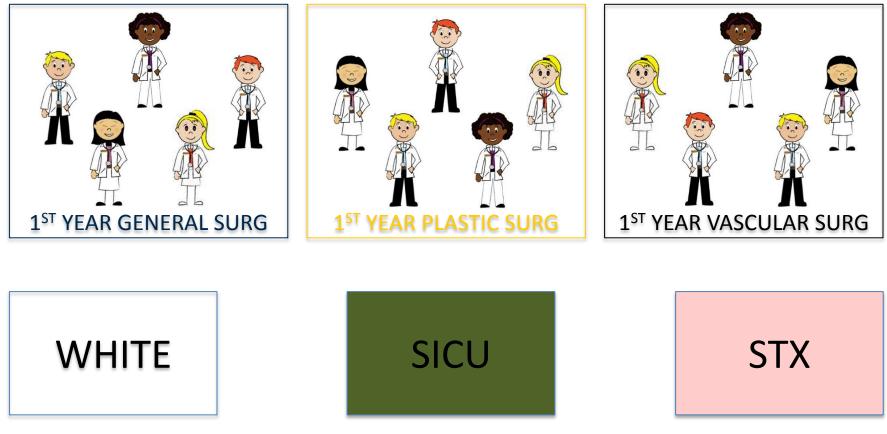
Background


- Motivation
- Model Formulation
- Model Implementation
- Conclusions and Future Work

Challenges in Scheduling

- Time-intensive process
- Numerous stakeholders
- Complex rules and legal requirements
- Conflicting goals
- Varying strategies and interdependencies
- "Good enough" mentality

 Each program has unique educational requirements (operative and disease exposure)


	_	PGFGYI	PGY2PGY2PGY	ľ3	PGPGY4	PGPGY4 PG	Y6	PGYPSGY7	
		MAIZE	MAIZE	_	MAIZE	MAIZE	IC	MAIZE	
2 2		BLUE	BLUE	BLUE/A		BLUE		RED	
33		WHITE	WHITE		WHITE	WHITE			
44		MAIZE/BLUE/WHITI	MAIZE/BLUE/WHITE		BLUE	C GO	LD	BLUE	
55		ACS		1	ACS	ARE		WHITE	
66		DSP	-simh acs simh	cs ^{sjmh}	SJMH			BLUE	
77		TBEPLA			DSPOP	I F I		ACS	
88		gi su sigu	ANES		FLOAT	SJM	П	ACS	
99	V	(A GS-\ STX)	RED DSPDAY C	SLT	SICU			STX	
1010		VASCSVA	ortho float ght	CSLT	THS	ELECTIVE	ND	SVA	
		STVA CT	TBE SICU VAS	C S	STX/SVA	FOOTE		VA GS	
12 2		PE VAGS -VASC	SICVA GS-VASCG	DNC	VA GS	VA GS-VASC	VA	GS-VASC	

General P Sustige Syn (geners (denetside h2sf pleave pleav

Service Coverage Requirements

 Each service requires a resident complement comprised of varying skillsets and disciplines FNGINFFRING

Traditional Scheduling Approach

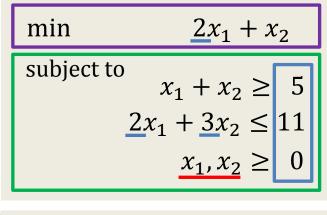
MICHIGAN ENGINEERING UNIVERSITY OF MICHIGAN

- I. Build rotation templates
- 2. Adjust for coverage and educational needs
- 3. Renegotiate after reaching a dead-end

JULY	AUG	SEPT	OCT	NOV	DEC	JAN	FEB	MAR	APRIL	MAY	JUNE
BLUE	MAIZE	PLA	SVA	SICU	BLUE	WHITE	PLA	STX	VA G&V	VA CT	DSP
VA G&V	PLA	MAIZE	WHITE	ACS	BLUE	SICU	BLUE	PLA	STX	STX	VA CT
VA CT	PLA	BLUE	DSP	VA G&V	ACS	SICU	BLUE	MAIZE	WHITE	SVA	SVA
MAIZE	VA CT	VA G&V	BLUE	SVA	WHITE	ACS	SICU	BLUE	STX	PLA	DSP

Design a linear program which automates creation of a block schedule that satisfies the needs of the residents and services.

Presentation Outline


MICHIGAN ENGINEERING UNIVERSITY OF MICHIGAN

- Background
- Motivation
- Model Formulation
- Model Implementation
- Conclusions and Future Work

Linear Programming Basics

- A technique to solve complicated story problems
- Four basic parts
 - Sets and parameters
 - Decision variables
 - Objective function
 - <u>Constraints</u>

Optimal Solution: (1, 4) Objective Value = 6

R: residents C: resident categories S: services M: months

 $a_{rc} \in \{0, 1\}$: indicates if resident r fits category c

- \mathcal{L}_{csm} : lower bound on number of residents fitting category c in service s during month m
- \mathcal{U}_{csm} : upper bound on number of residents fitting category \boldsymbol{c} in service \boldsymbol{s} during month \boldsymbol{m}
- λ_{rs} : lower bound on number of months resident r must spend on service s
- μ_{rs} : upper bound on number of months resident r must spend on service s

 $x_{rsm} \in \{0, 1\}$: whether resident r is assigned to service s in month m $\forall r \in R, s \in S, m \in M$

The base model does not have an objective function.

I. Every resident gets assigned to one service every month

$$\sum_{s\in S} x_{rsm} = 1, \qquad \forall r \in R, m \in M$$

2. Every resident satisfies their educational requirements

$$\lambda_{rs} \leq \sum_{m \in M} x_{rsm} \leq \mu_{rs}, \quad \forall r \in R, s \in S$$

3. Every service satisfies their service coverage needs

$$\mathcal{L}_{csm} \leq \sum_{r \in R} a_{rc} x_{rsm} \leq \mathcal{U}_{csm}, \qquad \forall \ c \in C, s \in S, m \in M$$

I. Every resident gets assigned to one service every month

x_{Smith,Blue,July}
Is Dr. Smith assigned to the Blue service in July?
x_{Smith,White,July}
Is Dr. Smith assigned to the White service in July?

 $x_{Smith,Maize,July} + x_{Smith,Blue,July} + x_{Smith,White,July} = 1$

I. Every resident gets assigned to one service every month

$$\begin{aligned} x_{Smith,Maize,July} + x_{Smith,Blue,July} + x_{Smith,White,July} &= 1 \\ x_{Smith,Maize,Aug} + x_{Smith,Blue,Aug} + x_{Smith,White,Aug} &= 1 \\ \vdots \\ x_{Smith,Maize,June} + x_{Smith,Blue,June} + x_{Smith,White,June} &= 1 \end{aligned}$$

$$\begin{aligned} x_{Jones,Maize,July} + x_{Jones,Blue,July} + x_{Jones,White,July} &= 1 \\ \vdots \\ x_{Jones,Maize,June} + x_{Jones,Blue,June} + x_{Jones,White,June} &= 1 \end{aligned}$$

$$\sum_{s\in S} x_{rsm} = 1, \qquad \forall r \in R, m \in M$$

2. Every resident satisfies their educational requirements

x_Smith,Maize,JulyIs Dr. Smith assigned to the Maize service in July?If yes, x_Smith,Maize,July= I.If no, x_Smith,Maize,July= 0.x_Smith,Maize,AugIs Dr. Smith assigned to the Maize service in August?..<

 $1 \le x_{Smith,Maize,July} + x_{Smith,Maize,Aug} + \ldots + x_{Smith,Maize,June} \le 2$

- 2. Every resident satisfies their educational requirements
 - $1 \le x_{Smith,Maize,July} + x_{Smith,Maize,Aug} + \ldots + x_{Smith,Maize,June} \le 2$
 - $1 \le x_{Smith,Blue,July} + x_{Smith,Blue,Aug} + \ldots + x_{Smith,Blue,June} \le 2$
 - $1 \le x_{Smith,White,July} + x_{Smith,White,Aug} + \dots + x_{Smith,White,June} \le 2$
 - $$\begin{split} 1 &\leq x_{Jones,Maize,July} + x_{Jones,Maize,Aug} + \ldots + x_{Jones,Maize,June} \leq 2 \\ &\vdots \\ 1 &\leq x_{Jones,Blue,July} + x_{Jones,Blue,Aug} + \ldots + x_{Jones,Blue,June} \leq 2 \end{split}$$

$$\lambda_{rs} \leq \sum_{m \in M} x_{rsm} \leq \mu_{rs}, \quad \forall r \in R, s \in S$$

3. Every service satisfies their service coverage needs

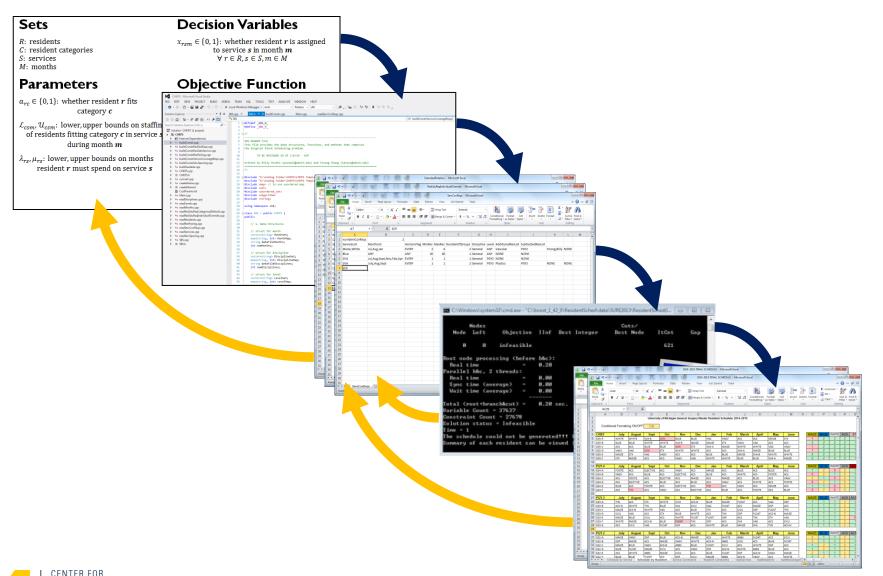
- 3. Every service satisfies their service coverage needs
 - $$\begin{split} 3 &\leq a_{Smith,GS} x_{Smith,Maize,July} + a_{Jones,GS} x_{Jones,Maize,July} \\ &\quad + a_{Chan,GS} x_{Chan,Maize,July} + \ldots + a_{Gupta,GS} x_{Gupta,Maize,July} \\ &\leq 4 \end{split}$$
 - $1 \le a_{Smith,PGY1} x_{Smith,Maize,July} + a_{Jones,PGY1} x_{Jones,Maize,July} + a_{Chan,PGY1} x_{Chan,Maize,July} + \dots + a_{Gupta,PGY1} x_{Gupta,Maize,July} \le 2$

$$\mathcal{L}_{csm} \leq \sum_{r \in R} a_{rc} x_{rsm} \leq \mathcal{U}_{csm}, \quad \forall c \in C, s \in S, m \in M$$

Expanded Model

MICHIGAN ENGINEERING UNIVERSITY OF MICHIGAN

- Distributed Educational Requirements
- Distributed Coverage Needs
- Extended Rotations
- Service Sequencing
- Service Spacing
- Resident Pairing


Presentation Outline

MICHIGAN ENGINEERING UNIVERSITY OF MICHIGAN

- Background
- Motivation
- Model Formulation
- Model Implementation
- Conclusions and Future Work

Implementation Process

Presentation Outline

- Background
- Motivation
- Model Formulation
- Model Implementation

Conclusions and Future Work

- Scheduling issues affect hospital workflow, training quality, and patient safety
- Scheduling residency programs at UMHS is highly interdependent, complex, and poorly executed
- We can address these scheduling needs using a linear programming formulation

Future Work

- Define metrics for schedule optimality
 - Minimize deviation from desired resident complement by service
 - Maximize satisfied requests for educational customization
- Apply model to improve scheduling for other training programs

- Pediatric Medicine rotation schedule
- C.S. Mott Emergency Department shift schedule
- Chemotherapy infusion patient schedule
- Physician clinic/OR schedule
- Master surgical schedule problem
- Nurse staff scheduling

Acknowledgements

- Center for Healthcare Engineering and Patient Safety
- University of Michigan Department of Surgery
- The Seth Bonder Foundation
- The Doctors Company Foundation

Questions [?] and Comments [!]

Billy Pozehl

pozewil@umich.edu

Dr. Rishi Reddy

reddyrm@med.umich.edu

Prof. Jake Seagull

jseagull@med.umich.edu

Prof. Amy Cohn

amycohn@med.umich.edu

Prof. Mark Daskin

msdaskin@umich.edu

Janice Davis

janiced@med.umich.edu

