This document formulates the basic notation and constraints for the Shift Scheduling Game.

1 Inputs: Sets and other Parameters

1.1 Sets

R	set of residents
$I \subseteq R$	set of interns
S	set of shifts $\{1,2,\ldots,7\}$
$N \subseteq S$	set of night shifts
D	set of days
$D_r \subseteq D \forall r \in R$	set of days that intern r cannot work
$L_{sd} \subseteq (S \times D)$	the set of shifts incompatible with (s, d)

1.2 Parameters

ut = 16	upper bound for number of total shifts
lt = 12	lower bound for number of total shifts
un = 5	upper bound for number of night shifts
ln = 2	lower bound for number of night shifts

2 Decision Variables

 x_{rsd} do we assign resident r to shift s on day d?

3 Objective Function

This simplified version of the shift scheduling problem does not have an objective function as the goal is simply to create a feasible schedule rather than one that is optimal based on certain metrics.

4 Variable Restrictions

 $x_{rsd} \{0,1\} \quad \forall r \in R, s \in S, d \in D$

5 Constraints

1. Every shift needs a resident

For every shift s on every day d, exactly one resident r must be assigned to work.

$$\sum_{r \in R} x_{rsd} = 1, \quad \forall s \in S, d \in D$$
(1)

2. Every resident needs between 12 and 16 shifts For every resident r, we must assign between 12 and 16 shifts across all shifts s over all days d.

$$\sum_{s \in S, d \in D} x_{rsd} \ge lt \quad \forall r \in R$$
⁽²⁾

$$\sum_{s \in S, d \in D} x_{rsd} \le ut \quad \forall r \in R \tag{3}$$

3. Every resident needs between 2 and 5 night shifts For every resident r, we must assign between 2 and 5 shifts across all night shifts s in N over all days d.

$$\sum_{s \in N, d \in D} x_{rsd} \ge ln, \quad \forall \ r \in R$$
(4)

$$\sum_{s \in N, d \in D} x_{rsd} \le un, \quad \forall \ r \in R$$
(5)

4. Every resident needs adequate rest between shifts

For every resident r, day d, and shift s the sum of x_{rsd} and its set of incompatible shifts in (s', d') must be equal to at most 1.

$$x_{rsd} + \sum_{(s',d')\in L_{sd}} x_{rs'd'} \le 1 \quad \forall \ r \in R, s \in S, d \in D$$

$$\tag{6}$$

5. Interns cannot work the first or last shift of the day Interns r in I cannot work the first (shift 1) or the last shift (shift 7) s of the day d.

$$\sum_{s \in \{1\}} \sum_{d \in D} x_{rsd} = 0 \quad \forall r \in I$$
(7)

$$\sum_{s \in \{7\}} \sum_{d \in D} x_{rsd} = 0 \quad \forall r \in I$$
(8)

6. Each resident has a specific day of week he or she cannot work Resident r has a specific day of week that he or she cannot work. D_r is the set of corresponding days.

$$x_{rsd} = 0 \quad \forall r \in R, s \in S, d \in D_r \tag{9}$$