This document formulates the basic notation and constraints for the Shift Scheduling Game.

1 Inputs: Sets and other Parameters

1.1 Sets

R	set of residents
$I \subseteq R$	set of interns
S	set of shifts $\{1,2, \ldots, 7\}$
$N \subseteq S$	set of night shifts
D	set of days
$D_{r} \subseteq D \forall r \in R$	set of days that intern r cannot work
$L_{s d} \subseteq(S \times D)$	the set of shifts incompatible with (s, d)

1.2 Parameters

$$
\begin{array}{ll}
u t=16 & \text { upper bound for number of total shifts } \\
l t=12 & \text { lower bound for number of total shifts } \\
\text { un=5 } & \text { upper bound for number of night shifts } \\
l n=2 & \text { lower bound for number of night shifts }
\end{array}
$$

2 Decision Variables

$x_{r s d} \quad$ do we assign resident r to shift s on day d ?

3 Objective Function

This simplified version of the shift scheduling problem does not have an objective function as the goal is simply to create a feasible schedule rather than one that is optimal based on certain metrics.

4 Variable Restrictions

$x_{r s d}\{0,1\} \quad \forall r \in R, s \in S, d \in D$

5 Constraints

1. Every shift needs a resident

For every shift s on every day d, exactly one resident r must be assigned to work.

$$
\begin{equation*}
\sum_{r \in R} x_{r s d}=1, \quad \forall s \in S, d \in D \tag{1}
\end{equation*}
$$

2. Every resident needs between 12 and 16 shifts

For every resident r, we must assign between 12 and 16 shifts across all shifts s over all days d.

$$
\begin{align*}
& \sum_{s \in S, d \in D} x_{r s d} \geq l t \quad \forall r \in R \tag{2}\\
& \sum_{s \in S, d \in D} x_{r s d} \leq u t \quad \forall r \in R \tag{3}
\end{align*}
$$

3. Every resident needs between 2 and 5 night shifts

For every resident r, we must assign between 2 and 5 shifts across all night shifts s in N over all days d.

$$
\begin{align*}
& \sum_{s \in N, d \in D} x_{r s d} \geq l n, \quad \forall r \in R \tag{4}\\
& \sum_{s \in N, d \in D} x_{r s d} \leq u n, \quad \forall r \in R \tag{5}
\end{align*}
$$

4. Every resident needs adequate rest between shifts

For every resident r, day d, and shift s the sum of $x_{r s d}$ and its set of incompatible shifts in $\left(s^{\prime}, d^{\prime}\right)$ must be equal to at most 1 .

$$
\begin{equation*}
x_{r s d}+\sum_{\left(s^{\prime}, d^{\prime}\right) \in L_{s d}} x_{r s^{\prime} d^{\prime}} \leq 1 \quad \forall r \in R, s \in S, d \in D \tag{6}
\end{equation*}
$$

5. Interns cannot work the first or last shift of the day

Interns r in I cannot work the first (shift 1) or the last shift (shift 7) s of the day d.

$$
\begin{align*}
& \sum_{s \in\{1\}} \sum_{d \in D} x_{r s d}=0 \quad \forall r \in I \tag{7}\\
& \sum_{s \in\{7\}} \sum_{d \in D} x_{r s d}=0 \quad \forall r \in I \tag{8}
\end{align*}
$$

6. Each resident has a specific day of week he or she cannot work

Resident r has a specific day of week that he or she cannot work. D_{r} is the set of corresponding days.

$$
\begin{equation*}
x_{r s d}=0 \quad \forall r \in R, s \in S, d \in D_{r} \tag{9}
\end{equation*}
$$

