

A Systematic Approach to Improving the Reprocessing of Surgical Instruments

Nina Scheinberg

Faculty and Staff

Amy Cohn, PhD^{1,2}

James P. Bagian, MD, PE^{1,2}

Joseph DeRosier, PE, CSP^{1,2}

Shawn Murphy, MSN, RN, CNOR^{3,4}

Renee Prince, MHA, BSN, RN³

Julia Jackson, CST, MEd, FAST⁴

¹ Center for Healthcare Engineering and Patient Safety, University of Michigan, Ann Arbor

- ² Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor
- ³ Department of Surgery, OR Nursing, University of Michigan Health System
- ⁴ Central Sterile Processing Department, University of Michigan Health System

<u>Students</u>

Leah Raschid^{1,2}

Bill Zhang^{1,2}

Outline

- Background
- Goals and Objectives
- Methods
 - Process Flow Analyses
 - Cleanability Index
 - Instrument Set Reconfiguration
- Future Work
- Questions

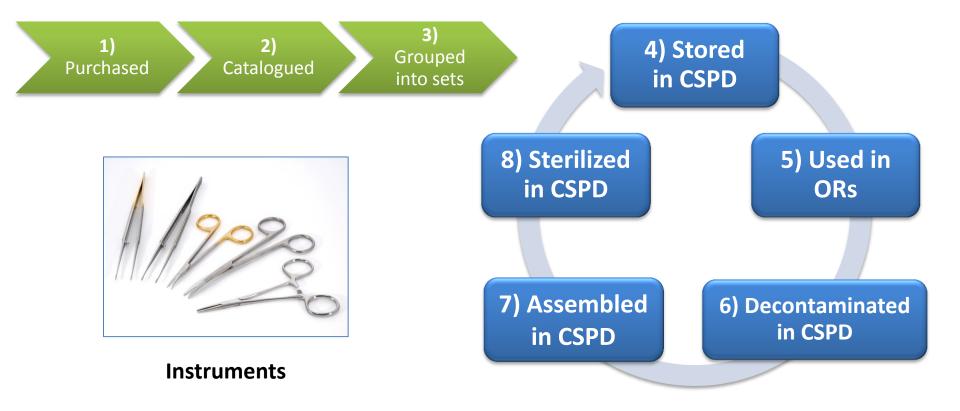
BACKGROUND

Key Terms

Surgical Instrument Reprocessing

Surgical Instrument Cycle

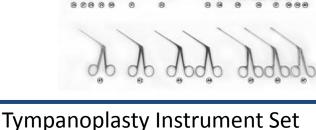
- Bioburden Contamination by human tissue from a previous surgical case (e.g., blood, bone)
- CSPD Central Sterile Processing
 Department
- OR Operating Room
- Surgical Case Surgery


Surgical Instrument Reprocessing

- Efficiency is a critical challenge for hospitals nationwide
- Reprocessing involves multiple steps, resources, and stakeholders
- UMHS:
 - 51,000+ cases per year
 - 65-70 cases per day
 - 4,000 instruments processed per day

Surgical Instrument Cycle

together in predefined instrument "**sets**" or "**trays**"


 Instruments are classified by category

Instruments are grouped

•

 Some categories have multiple sub-categories

NEERING & PATIENT SAFETY

GOALS AND OBJECTIVES

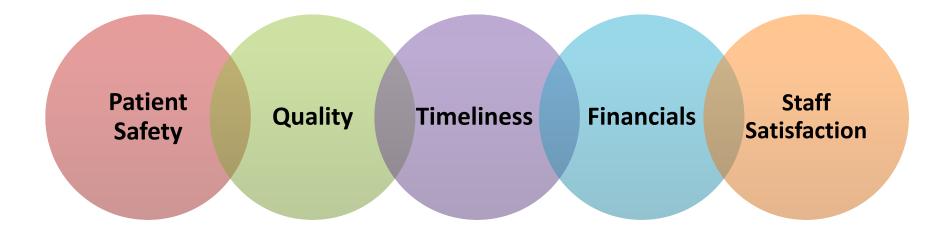
Goal

Key Issues and Challenges

To have all items required for the proper care of the patient **available** at the time of surgery, properly **cleaned, sterilized,** and **in working condition** – while ensuring the efficient use of resources.

Key Issues and Challenges

MICHIGAN ENGINEERING UNIVERSITY OF MICHIGAN


- Challenges are ensuring
 - Sets and instruments are available
 - All instruments are functioning
 - All instruments are free of bioburden/debris
- Four new ORs are scheduled to open in June 2016

Key Issues and Challenges

Institutional outcome measures not being met:

Key Issues and Challenges

- Why do these issues exist?
 - OR Volume ↑
 - CSPD struggles to keep up
 - Time pressure to turn over ORs \uparrow
 - OR staff forgo point-of-use instrument-cleaning protocol
 - Instrument design complexity \uparrow
 - Each instrument has a unique cleaning protocol (IFU)

METHODS

Process Flow Analyses

Cleanability Index

Instrument Set Reconfiguration

Objective I: Understand UMHS's reprocessing system

Purpose

Grasp and define current state processes

Methods

- Observations, interviews, and process flow mapping
- Historical data analyses

- We observed variations in decontamination processing times despite 15 min/tray policy
 - It's not the staff
 - It's the system
 - The system is creating an environment for adverse events

Findings and Conclusions, continued

- We identified two areas of opportunity for investigation:
 - Instrument cleanability
 - Instrument set configurations
- We recognized that:
 - Some instruments are more "bioburden-prone" due to design features

Findings and Conclusions, continued

- We concluded that:
 - All instruments cannot be treated equally
 - Harder-to-clean instruments require more cleaning time

Objective 2: Develop an instrument "Cleanability Index" (CI)

Purpose

- Create a systematic way to determine:
 - i. An instrument's level of cleanability (e.g., on a 1-10 scale)
 - ii. A set's level of cleanability, based on its contents
 - iii. Recommended cleaning times based on a set's level of cleanability

Methods

- Focus group surveys to capture staff's perceived ease and difficulty of cleaning instruments
 - Analytical Hierarchy Process (AHP)

Methods

- We developed a list of instrument design features
- We identified Neurosurgery's low-risk and high-risk instruments and their associated design features

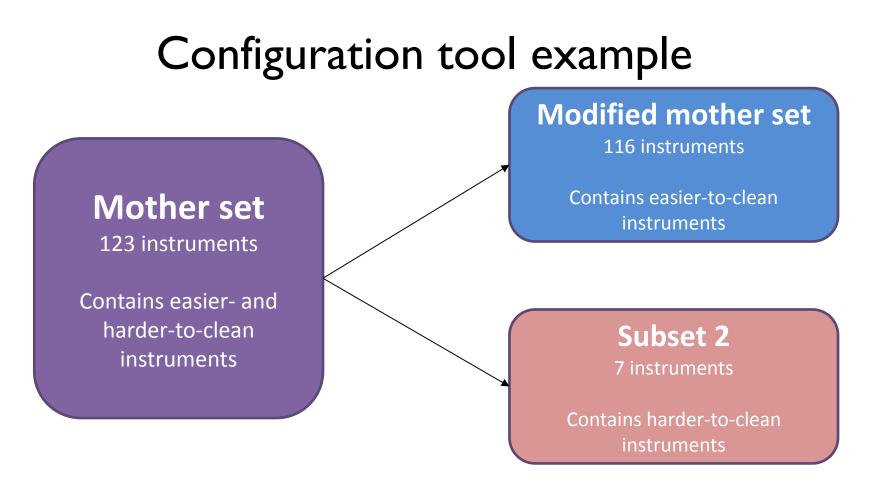
Surgical Bowl EASIER to clean

Retractor HARDER to clean

- Preliminary analysis showed positive correlations between
 - Staff perceptions and trending bioburden incident data
 - Staff perceptions and hard-to-clean instruments identified by the CI system

Objective 3: Develop an instrument-set configuration tool to decrease number of instruments sent back for reprocessing when a bioburden event occurs

Purpose


- Create tool to:
 - i. Evaluate the impact that set configuration has on reprocessing outcomes
 - ii. Recommend potential optimal set configurations

Methods

Excel-based modeling

Original instrument set

Original set reconfigured into 2 subsets

Instrument Set Reconfiguration

Set Configuration Demo Tool							
Set Type Name:	SET, MINOR NEURO UH	Update Filter		SET, MINOR NEURO UH - 500148			
Set Type ID:	500148						
Initial	SET TYPE	% sent back	# Instruments	Weight (lb)	# Categories		
Configuration	Minor Neuro	12.5%	123	22.33	22		
	SET TYPE	% sent back	# Instruments	Weight (lb)	# Categories		
Reconfiguration							
Summary							

Instrument Set Reconfiguration

ItemCategory	Aggregate Weight (<i>lbs)</i>	P(bioburden)	# of Items	Items distributed correctly?	Modified Mother Set
(Total)			123	123	123
APPLIER	0.14	0.00%	4	4	4
BIPOLAR (forcep)	0.17	0.60%	4	4	4
CUP	0.14	0.00%	6	6	6
CURETTE	0.12	0.00%	1	1	1
DISSECTOR	0.08	0.00%	6	6	6
ELEVATOR	0.21	0.00%	5	5	5
FORCEP	0.17	0.00%	40	40	40
GLASS	0.16	0.00%	1	1	1
GUN	0.50	0.00%	1	1	1
HEMOSTAT	0.04	0.00%	10	10	10
НООК	0.07	0.00%	1	1	1
KNIFE HANDLE	0.06	0.00%	3	3	3
NEEDLE HOLDER	0.15	0.00%	6	6	6
RETRACTOR	0.21	0.00%	10	10	10
KERRISON (rongeur)	0.56	0.52%	7	7	7
RULER	0.02	0.00%	1	1	1
SCISSOR	0.14	0.00%	4	4	4
SUCTION	0.05	0.30%	2	2	2
SUCTION TIP	0.04	0.00%	6	6	6
TOWEL CLIP	0.07	0.00%	4	4	4
WEAVER	0.08	0.00%	1	1	1

Kerrison separation

- Kerrisons
 - Contain a virtually inaccessible channel
 - Are often delivered to ORs with bioburden
- We separated all 5 kerrisons out of the Minor Neuro set and into their own set

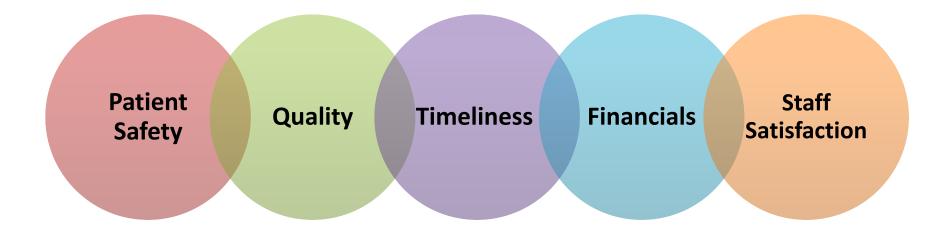
Instrument Set Reconfiguration

Set Configuration Demo Tool							
Set Type Name:	Set Type Name: set, MINOR NEURO UH		Update Filters		INOR NEURO UH - 500148 -		
Set Type ID:	500148						
l			1				
Initial Configuration	SET TYPE	% sent back	# Instruments	Weight (lb)	# Categories		
Comgulation	Minor Neuro	12.5%	123	22.33	22		
	SET TYPE	% sent back	# Instruments	Weight (lb)	# Categories		
	Minor Neuro Post-Separation	6.8%	118	19.53	21		
	Kerrison Subset	6.1%	5	2.80	1		
Reconfiguration							
Summary							

- In addition to separating the kerrisons, UMHS bought new, easier-to-clean models
 - New models contain a swivel hinge

- Since the separation in August 2015
 - UMHS has reported 0 bioburden incidents related to kerrisons
 - The per-month average number of Minor Neuro bioburden incidents decreased from 15 to 3

- OR time cost analysis
 - UMHS spends \$58 per minute
 - Bioburden incidents may cause OR delays of 5 minutes to 30 minutes


- OR time cost analysis
 - With the decrease in Minor Neuro bioburden incidents, UMHS will avoid spending \$27,490.56 to \$236,290.56 per year
 - These savings will increase in subsequent years since the numbers above include the cost of separation (new trays)

Instrument Set Reconfiguration

Institutional outcome measures positively impacted:

NEXT STEPS

Future Work

- Future Work
 - Refine and expand the pilot of the Cleanability Index to include recommendations for cleaning times
 - Use the Set Reconfiguration Tool to identify additional bioburden-prone instruments to separate
 - Further validate the fact that separation positively impacts the institutional outcome measures
 - Publish findings and recommendations

Thank you!

Nina Scheinberg: <u>scheinni@umich.edu</u> Amy Cohn: <u>amycohn@med.umich.edu</u>

