

Scheduling Healthcare Providers William Pozehl Research Specialist

Collaborators

Prof. Amy Cohn Associate Director, UM CHEPS

Young-Chae Hong

Ph.D Candidate, UM Industrial & Operations Engineering

Dr. Steve Gorga Chief Medical Resident, UMHS Pediatrics

Janice Davis

Education Director, UMHS Department of Surgery

Presentation outline

Motivation

C.S. Mott Emergency Room shift scheduling

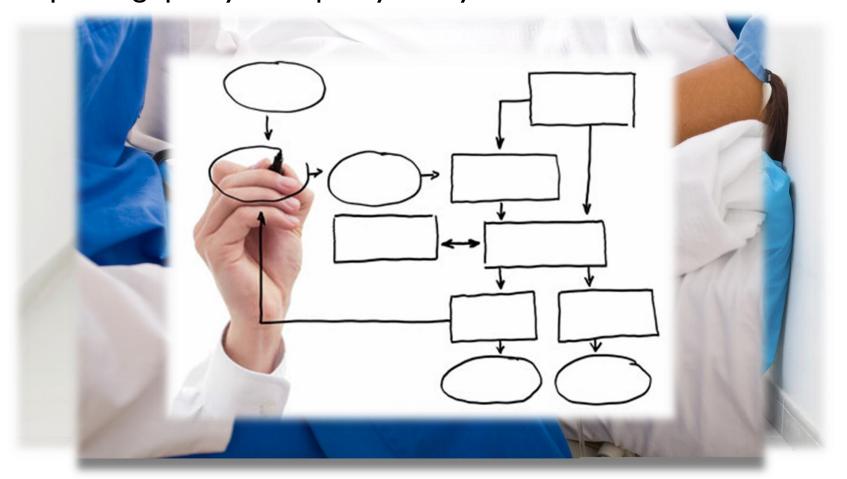
Residency rotation scheduling

Conclusions and potential opportunities

Scheduling needs in healthcare

Physician scheduling

Nurse scheduling


Operating room scheduling

Appointment scheduling

Many more...

Scheduling affects...

... plating and alisy cinis deputable xy soften by a satisfaction

Schedules hand-built by program director, chief resident(s), or administrator

Benefits

- I) Intimate problem knowledge
- 2) Administrative consolidation
- 3) Streamlined approval process

Drawbacks

- I) Time-consuming process
- 2) High cognitive demand
- Limited consideration of tradeoffs

Medical training at UMHS

Presentation outline

Motivation

C.S. Mott Emergency Room shift scheduling

Residency rotation scheduling

Conclusions and potential opportunities

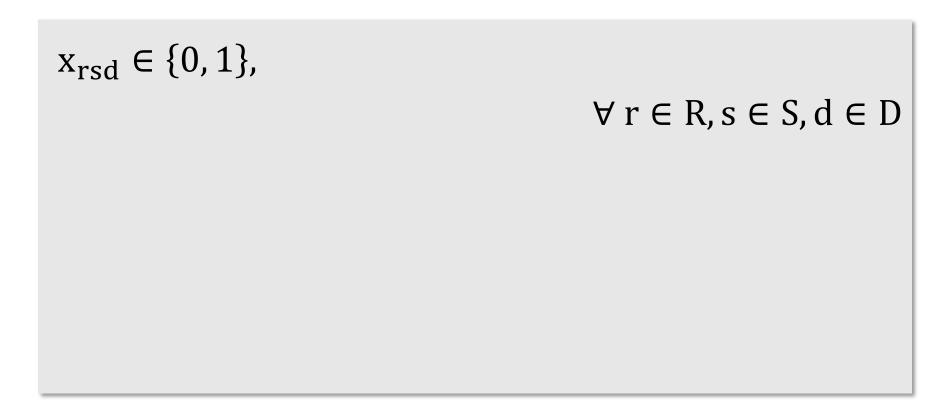
C.S. Mott Pediatric Emergency Room

Level I Pediatric Trauma Center

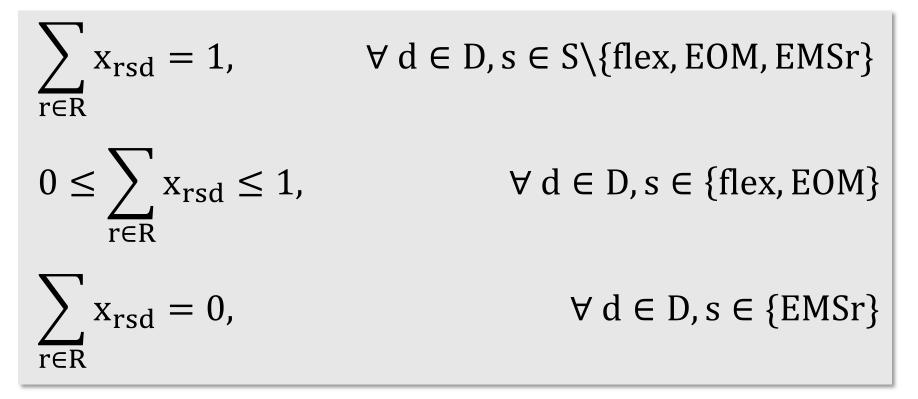
About 25,000 visits per year

Staffed by 5 residency programs

- Pediatrics
- Medicine-Pediatrics
- Family Medicine
- Emergency Medicine
- Psychology



Resource-intensive process


- Chief resident spends 20 25 hours per month
- Numerous revisions
- Complicated requirements
 - Legal, regulatory, and administrative rules
 - Resident education
 - Service coverage

Decision variables

Whether to assign resident **r** to shift **s** on day **d**

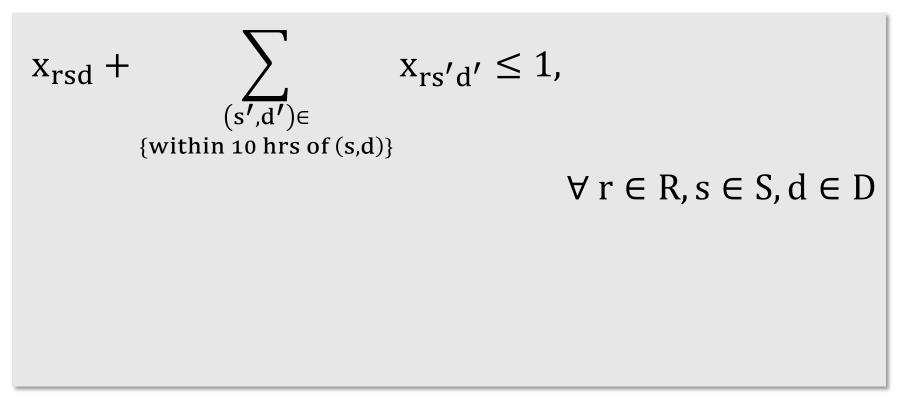
Must provide sufficient shift coverage for every day and shift

Must provide adequate educational experience for every resident

$$\begin{split} \text{LBShifts}_{r} &\leq \sum_{s \in S} \sum_{d \in D} x_{rsd} \leq \text{UBShifts}_{r}, \\ &\forall r \in R \\ \\ \text{LBNites}_{r} &\leq \sum_{s \in S} \sum_{d \in D} x_{rsd} \leq \text{UBNites}_{r}, \\ &\forall r \in R \end{split}$$

Cannot create work assignments that conflict with outside commitments

Ensure that at least 1 of 2 shifts in a pair is covered by a Pediatric resident each day


$$\begin{split} \sum_{r \in \{PED\}} \sum_{s \in P} x_{rsd} &\geq 1, \\ \forall \ d \in D, P = \big\{ \{7a, 9a\}, \{4p, 5p\}, \{8p, 11p\} \big\} \end{split}$$

Certain shifts must be covered by senior-level residents

$$\sum_{r \in \{interns\}} \sum_{d \in D} x_{rsd} = 0,$$

∀ s ∈ {7a, 11p}

Residents must get at least 10 hours off-duty between ending one shift and beginning another

Multi-criteria objective

Multi-criteria schedule

- Total shift equity (TSE)
- Night shift equity (NSE)
- Bad sleep patterns (BSP)
- Post-continuity clinic shifts (PCC)

Preferences? Weights? Trade-off?

Multi-objective Mathematical Programming

Optimization problem

 $\begin{array}{ll} \operatorname{Min} w_1(TSE) + w_2(NSE) + w_3(BSP) + w_4(PCC) \\ \text{s. t.} & \text{"rules/requirements"} \\ & x_{rsd} \in \{0,1\} \end{array}$

Quantifying preferences (w_i) is difficult

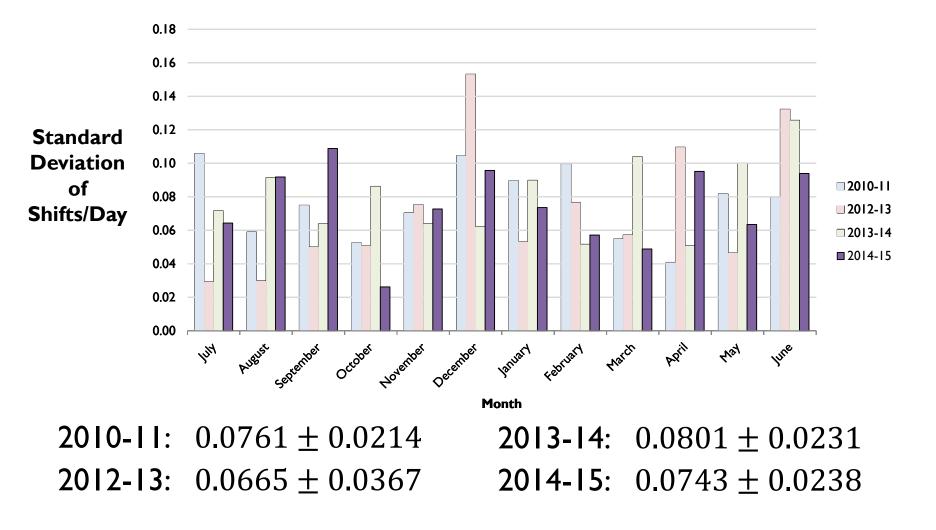
- Subjective weights
- Alternative measures
- Non-linearity

Feasibility Optimization problem

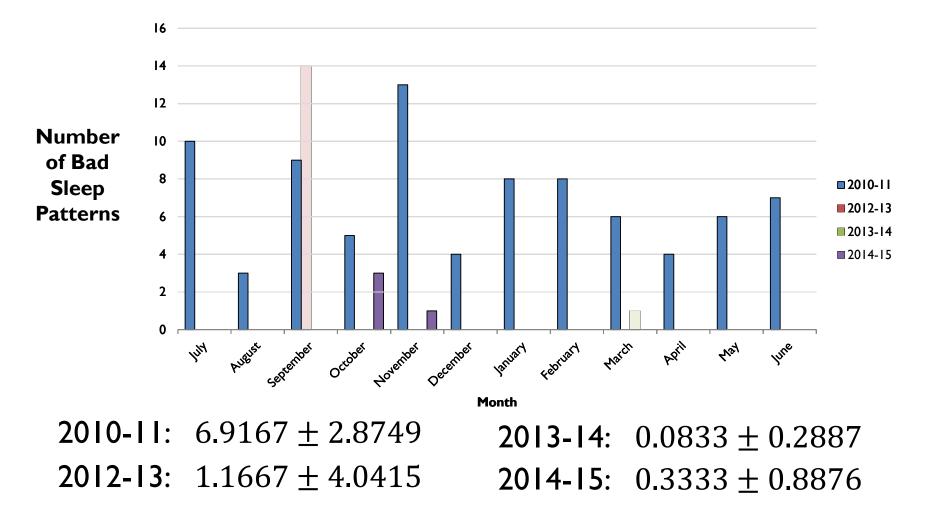
 $\begin{array}{ll} \operatorname{Min} w_1(TSE) + w_2(NSE) + w_3(BSP) + w_4(PCC) \\ \text{s.t.} & \text{"rules/requirements"} \\ x_{rsd} \in \{0,1\} \\ lb_{TSE} \leq (TSE) \leq ub_{TSE} \\ lb_{NSE} \leq (NSE) \leq ub_{NSE} \\ lb_{BSP} \leq (BSP) \leq ub_{BSP} \\ lb_{PCC} \leq (PCC) \leq ub_{PCC} \end{array}$

Benefits of a feasibility problem

- Flexibility
- Speed: < 2 seconds per iteration


Given: 20 residents / 7 shifts daily / 35 days

Resident Name	Number of Shifts	Number of Night Shifts	Number of Post-CC Shifts	Number of Bad Sleep Patterns
Smith	8 (<mark>7,9</mark>)	2 (<mark>2,3</mark>)	0 (<mark>0,1</mark>)	0 (<mark>0,0</mark>)
Sanchez	8 (<mark>7,10</mark>)	2 (<mark>2,3</mark>)	0 (<mark>0,1</mark>)	0 (<mark>0,0</mark>)
Chen	8 (<mark>7,9</mark>)	2 (<mark>2,3</mark>)	1 (<mark>0,1</mark>)	0 (<mark>0,0</mark>)
Shah	14 (<mark>13,15</mark>)	4 (<mark>3,5</mark>)	1 (<mark>0,1</mark>)	0 (<mark>0,0</mark>)
•	:	÷	•	:


Reduced time to create schedules

Statistically significant improvement in 3 of 4 major metrics

Total shift equity

Bad sleep patterns

Months with poor metrics tend to have:

- Fewer residents overall
- Fewer senior residents
- Fewer Pediatrics residents

Simulation study

	Percentage Feasible (of 2,000 Iterations)										
	20	5.4%	33.0%	66.8%	84.8%	92.6%	95.9%	9 5.2%	96.4%	95.7%	96 .1%
	19	6.2%	32.4%	60.7%	79.7%	89.5%	93.1%	94.0%	93.5%	9 4.2%	94.3%
ts	18	4.1%	25.8%	55.2%	76.2%	87.6%	88.9%	91.4%	91.1%	9 2.2%	92.6%
Residents	17	3.8%	25.0%	48.8%	71.4%	81.9%	86.4%	89.3%	87.8%	86.9%	89 .1%
esic	16	2.2%	20.0%	45.6%	65.5%	77.0%	81.0%	80.0%	83.3%	82.4%	82.9%
	15	2.1%	16.6%	35.2%	55.7%	69.2%	75.4%	74.0%	76.2%	76.7%	75.7%
Total	14	1.2%	11.4%	2 9 .2%	47.9%	58.9%	63.2%	66. 9 %	67.9%	67.3%	67.8%
Ĕ	13	0.7%	7.4%	22. 9 %	36.4%	48.5%	55.5%	55.7%	54.4%	56.4%	56.2%
	12	0.6%	6.0%	16.3%	27.2%	34.2%	41.0%	41.8%	40.8%	41.7%	42. 9 %
	П	0.3%	3.4%	8.8%	15.5%	22.4%	27.5%	27.5%	25. 9 %	28.1%	28.1%
		10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
		Pr(Senior Standing)									

 $\mathbf{P}_{\mathbf{r}}$

Presentation outline

Motivation

C.S. Mott Emergency Room shift scheduling

Residency rotation scheduling

Conclusions and potential opportunities

Assigning residents to services over the course of the academic year

Must simultaneously satisfy service coverage needs and academic requirements

Typically month-long rotations

Pediatric Residency Program

Training in inpatient and ambulatory settings

Integration with combined programs

Service pair:

an ordered couplet of services that may be worked during the same month

Service Pair p					
I st Half Service	2 nd Half Service				
Hard Rotation?					
(I = Yes, 0 = No)					

Residencies and fellowships in

- General Vascular Anesthesiology
- Plastic Thoracic Many more...

Service and education integration with numerous other programs and institutions

Whether to assign resident **r** to service **s** (or pair **p**) on month **m**:

Pediatric Residency Program

 $x_{rpm} \in \{0, 1\},\$

 $\forall r \in R, p \in P, m \in M$

Department of Surgery

 $x_{rsm} \in \{0, 1\},\$

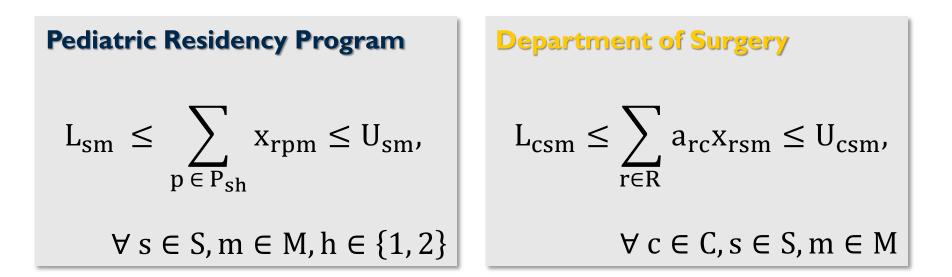
 $\forall r \in R, s \in S, m \in M$

Monthly rotation assignment

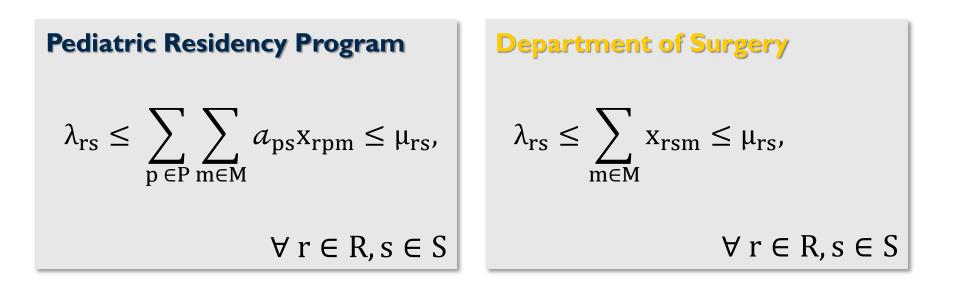
Each resident is assigned one service (pair) per month

Pediatric Residency Program

$$\sum_{p \in P} x_{rpm} = 1,$$


 $\forall r \in R, m \in M$

Department of Surgery


$$\sum_{s \in S} x_{rsm} = 1,$$

$$\forall r \in R, m \in M$$

Each service must have between a minimum L and maximum U number of residents (fitting a certain category c) at any time

Each resident must work between a minimum λ and maximum μ number of months on each service throughout the year

PEDIATRIC RESIDENCY PROGRAM-SPECIFIC CONSTRAINTS

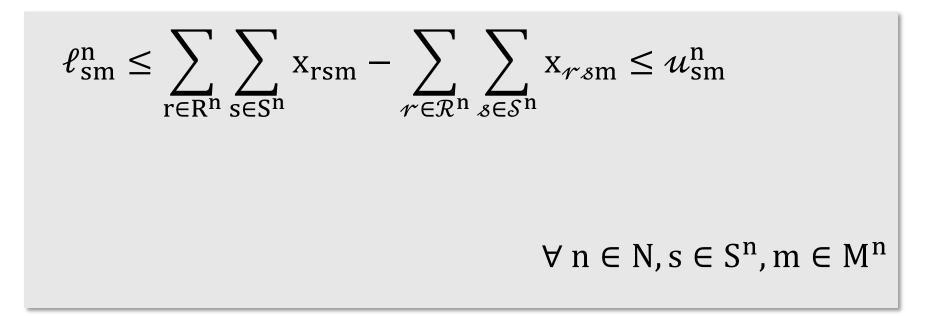
Residents may work a limited number of sequences of 3 hard service pairs h_p in a row

$$\begin{split} \sum_{p \in P} h_p x_{rpm} + h_p x_{rp(m+1)} + h_p x_{rp(m+2)} &\leq y_{rm} + 2, \\ &\forall r \in R, m \in \{1, \dots, |M| - 2\} \\ &\sum_{m \in M} y_{rm} \leq \mathcal{H}_r, \\ &\forall r \in R \end{split}$$

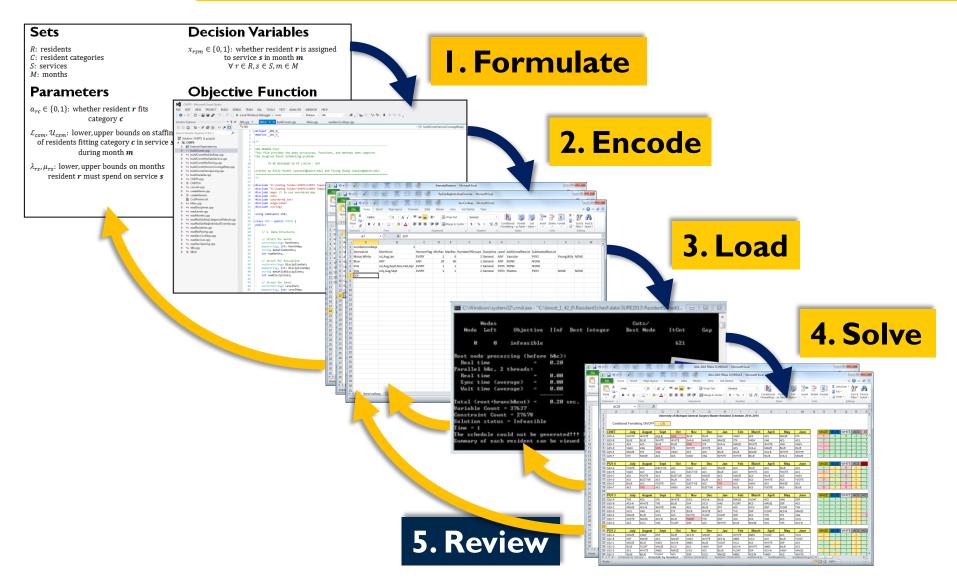
DEPARTMENT OF SURGERY-SPECIFIC CONSTRAINTS

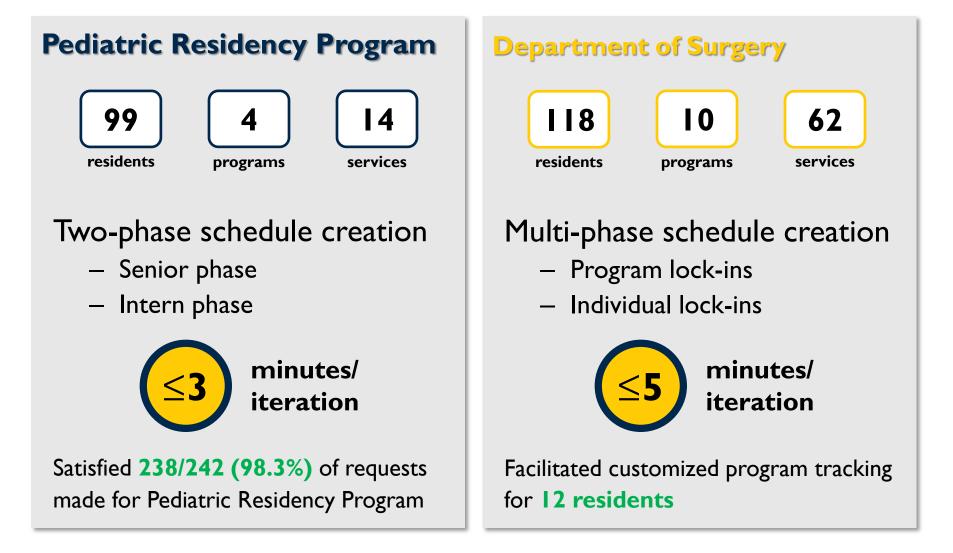
Residents assigned to services in extended rotation rule **e** must be assigned for consecutive months equal to the specified duration **d**^e

$$x_{rs[d^{e} \times (i-1)]} = x_{rs\{[d^{e} \times (i-1)]+j\}},$$


Residents included in sequencing rule \mathbf{q} must be assigned to certain services prior to being assigned to a particular service $\mathbf{s}_{\mathbf{q}}$?

$$\mathcal{L}^{q} \leq \left[\sum_{s \in S^{q}} \sum_{m \in M^{q}} x_{rsm}\right] - \sum_{\in \mathcal{R}^{n}} x_{rs'_{q}m'_{q}}$$
$$\forall q \in Q, r \in \mathbb{R}^{q}$$


Residents must not be assigned to a certain service more than once in a certain timeframe


Assigning residents in resident pair rule **n** from group \mathbb{R}^n to services \mathbb{S}^n requires also assigning residents from group \mathcal{R}^n to services \mathcal{S}^n

Implementation process

Implementation comparison

Presentation outline

Motivation

Emergency Department shift scheduling

Residency rotation scheduling

Conclusions and potential opportunities

Significantly reduced time and improved metrics for ED shift schedules

Lingering scheduling challenges may derive from the rotation schedule

Significantly improved satisfaction of time preferences for rotation schedules

Generalize models into universal formulation

Extend model to address other residency programs' needs

Apply algorithm to identify maximally feasible sets of requests

Acknowledgements

We graciously thank these organizations for supporting this work:

Seth Bonder Foundation

Questions [?] and comments [!]

William Pozehl

pozewil@umich.edu

Dr. Steve Gorga

smgorga@med.umich.edu

Prof.Amy Cohn

amycohn@med.umich.edu

Young-Chae Hong

hongyc@umich.edu