Scheduling Healthcare Providers Using Optimization
Paige Mollison1, William Pozehl M.S.E.2, Amy Cohn Ph.D.1,2, Stephen Gorga M.D.3, Janice Davis4

Problem Statement

The University of Michigan Medical School (UMMS) offers comprehensive training programs across many disciplines. Coordinating the long- and short-term schedules for all these trainees is a complex challenge.

Traditional Approach:

Hand-made schedules built by the Chief Resident or some other administrator

Benefits:
1) Intimate knowledge of problem
2) Administrative consolidation
3) Streamlined approval process

Drawbacks:
1) Time-consuming construction
2) High cognitive demand
3) Limited tradeoff consideration

Benefits

- Patient access, care quality, safety, and satisfaction
- Training quality and burnout rates
- Clinical/administrative workflow

Importance of Schedule Quality: Schedule quality impacts

- Patient access, care quality, safety, and satisfaction
- Training quality and burnout rates
- Clinical/administrative workflow

The Problem:

The construction process is resource-intensive yet often fails to satisfy the individual & collective needs of stakeholders for long- and short-term schedules

Objective:

Develop decision support systems (DSS) to enable fast construction of high-quality rotation & monthly schedules while improving measures of quality.

Annual Blocks: Solution Approach

1. **Formulate**
 Two models, each customized to specific needs of the program(s)

2. **Encode**
 Written in C++ using CPLEX 12.4, implemented in Visual Studio 2012

3. **Load**
 Inputs provided in a collection of .txt, .csv, and .xls files

4. **Solve**
 Software solves to optimality under input conditions

5. **Review**
 Schedule and metric reports generated for presentation to administrators

Monthly Schedules: Solution Approach

Metrics:
- Total Shift Equity (TSE)
- Night Shift Equity (NSE)
- Post-Continuity Clinic Shifts (PCC)

Feasibility Optimization Problem:

- Quantifying objective weights \(w_i \) is difficult due to
 - Non-linearity
 - Subjectivity

Iterative Improvement:

Engage Chief Resident to review, revise and finalize the schedule

Implementation Results:

- Statistically significant improvement in 3 of 4 metrics
- Reduced schedule creation time

Next Steps:

- Generalize models into universal formulation
- Extend models to address other residency programs’ needs
- Apply algorithm to apply maximally feasible sets of requests

Acknowledgements

This work was generously supported by:

- UMHS Department of Pediatrics & Communicable Diseases
- UMHS Department of Surgery
- The Doctors Company Foundation
- Seth Bonder Foundation

We also express our gratitude to the former chief residents and many students who have contributed to these projects.