Using Optimization to Improve Monthly Resident Shift Scheduling for C.S. Mott Emergency Department
Paige Mollison, William Pozehl M.S.E, Amy Cohn Ph.D., Dr. Stephen Gorga

Problem Statement

Background: C.S. Mott Pediatric Emergency Department (ED) at University of Michigan Health Systems
- Level 1 Pediatric Trauma Center
- Staffed by residents from 5 programs
- About 25,000 visits per year

Importance of Schedule Quality:
Poor-quality schedules can have a negative impact on
- Workflow
- Training quality and burnout rates
- Patient access, care quality, safety, and satisfaction

Traditional Approach: Hand-made schedule built by Chief Resident or administrator, requiring around 20 hours per month

Benefits	Drawbacks
Intimate Knowledge | Time-Consuming
Administrative Consolidation | Cognitively Demanding

The Challenge: Scheduling residents in the ED involves an overwhelming number of governing rules and preferences the scheduler must abide and consider.

Rules:
- All shifts require a resident
- 10 hour rest rule (ACGME)
- Continuity Clinics / Conferences
- Varying start dates and time off-requests
- Senior only shifts

Objective: Solve for a schedule quickly that satisfies all the rules while improving measures of schedule quality.

Quality | Time

Solution Approach

Metrics:
- Total Shift Equity (TSE)
- Night Shift Equity (NSE)
- Bad-Sleep Patterns (BSP)
- Post-Continuity Clinic Shifts (PCC)

Decision Variable: Whether to assign a certain resident to a certain shift on a certain day

\[x_{s, d} \in \{0, 1\}, \quad \forall r \in R, s \in S, d \in D \]

Constraint Example, Work-Rest Rule: Residents must get at least 10 hours off-duty between ending one shift and beginning another

\[x_{s, d} + \sum_{(r', s') \in \text{within 10 h of } (s,d)} x_{r', s'} \leq 1, \quad \forall r \in R, s \in S, d \in D \]

Feasibility Optimization Problem:

- Quantifying objective weights \(w_i\) is difficult due to
 - Non-linearity
 - Subjectivity
 - Speed (< 2 sec an iteration)

\[
\begin{align*}
\text{Minimize} & \quad \sum_{i=1}^n w_i x_i \\
\text{subject to} & \quad x_{s, d} \in \{0, 1\} \\
& \quad lb_{BSE} \leq (TSE) \leq ub_{BSE} \\
& \quad lb_{BSP} \leq (NSC) \leq ub_{BSP} \\
& \quad lb_{PCC} \leq (PCC) \leq ub_{PCC} \\
\end{align*}
\]

Iterative Improvement: engaging the Chief Resident to review, revise and finalize the schedule

<table>
<thead>
<tr>
<th>Resident Name</th>
<th>Number of Shifts</th>
<th>Number of Night Shifts</th>
<th>Number of Post-CC Shifts</th>
<th>Number of Bad Sleep Patterns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stumpos</td>
<td>8 (7,9)</td>
<td>2 (2,3)</td>
<td>0 (0,1)</td>
<td>0 (0,0)</td>
</tr>
<tr>
<td>Schwein</td>
<td>8 (7,10)</td>
<td>2 (2,3)</td>
<td>0 (0,1)</td>
<td>0 (0,0)</td>
</tr>
<tr>
<td>Grum</td>
<td>8 (7,9)</td>
<td>2 (2,3)</td>
<td>1 (0,1)</td>
<td>0 (0,0)</td>
</tr>
</tbody>
</table>

Impact/Results

Implementation Results:
- Reduced time to create schedules
 - 20 hours per month → 1 hour per month
- Statistically significant improvement in 3 of 4 metrics

Effect on Bad Sleep Patterns:

Effect on Night Shift Equity:

Conclusions - With our optimization based decision support tool we are able to:
- Significantly reduce time to build monthly schedules
- Improve metrics for generated schedules

Acknowledgements

We thank the Center for Healthcare Engineering and Patient Safety, The Seth Bonder Foundation, The Doctors Company Foundation, Summer Undergraduate Research Opportunity, and the UMHS Pediatric Emergency Department for supporting this work. We also want to thank Young-Chae Hong, Zak Vershure, Jonathan Mogannam, Luke Stumpo, Matt Rouhana, Nate Janes, Ajaay Chandrasekaran, and Eli Sherman for their continued help.