

Using Optimization to Improve Monthly Resident Shift Scheduling for C.S. Mott Emergency Department Paige Mollison, William Pozehl M.S.E, Amy Cohn Ph.D., Dr. Stephen Gorga

Problem Statement

Background: C.S. Mott Pediatric Emergency Department (ED) at University of Michigan Health Systems

- Level 1 Pediatric Trauma Center
- Staffed by residents from 5 programs
- About 25,000 visits per year

Importance of Schedule Quality: Poor-quality schedules can have a negative impact on

- Workflow
- Training quality and burnout rates

Patient access, care quality, safety, and satisfaction

Traditional Approach: Hand-made schedule built by Chief Resident or administrator, requiring around 20 hours per month

Benefits	Drawbacks	
Intimate Knowledge	Time-Consumi	
Administrative Consolidation	Cognitively Demai	

The Challenge: Scheduling residents in the ED involves an overwhelming number of governing rules and preferences the scheduler must abide and consider.

Rul	es:
	All shifts require a resident
	10 hour rest rule (ACGME)
	Continuity Clinics / Conferences
	Varying start dates and time off-request
	Senior only shifts

Objective: Solve for a schedule quickly that satisfies all the rules while improving measures of schedule quality.

2015 Healthcare Engineering and Patient Safety Symposium

Solution	Apr

Metrics:

- Total Shift Equity (TSE)
- Night Shift Equity (NSE)
- Bad-Sleep Patterns (BSP)
- Post-Continuity Clinic Shifts (PCC)

		-		
Resident Name	Smith	Jones	Chen	Joe
Night Shifts / Total Shifts	0 / 7	1/7	1/7	5 / 7
Fairness				

Decision Variable: Whether to assign a certain resident to a certain shift on a certain day

 $x_{rsd} \in \{0, 1\},\$

Constraint Example, Work-Rest Rule: Residents must get at least 10 hours off-duty between ending one shift and beginning another

 x_{rsd} +

 $x_{rs'd'} \leq 1$,

{*within* **10** *hrs of* (*s*,*d*)}

Feasibility Optimization Problem:

- × Quantifying objective weights (w_i) is difficult due to
 - Non-linearity _____
 - Subjectivity

Min $w_{\pm}(7)$	$TSE) + w_2(NSE) + w_2$
s. t.	"rules/requirer
	$x_{rsd} \in \{0,1\}$
	$lb_{TSE} \leq (TSE) \leq ub$
	$lb_{NSE} \leq (NSE) \leq u$
	$lb_{BSP} \leq (BSP) \leq u$
	$lb_{PCC} \leq (PCC) \leq ul$

Iterative Improvement: engaging the Chief Resident to review, revise and finalize the schedule

Resident Name	Number of Shifts	Number of Night Shifts	Number of Post-CC Shifts	Number of Bad Sleep Patterns
Stumpos	8 (7,9)	2 (2,3)	0 (<mark>0,1</mark>)	0 (<mark>0,0</mark>)
Schwein	8 (7,10)	2 (2,3)	0 (<mark>0,1</mark>)	0 (<mark>0,0</mark>)
Grum	8 (7,9)	2 (<mark>2,3</mark>)	1 (0,1)	0 (<mark>0,0</mark>)
0 0 0	•	• •	0 0 0	• •

- $\forall r \in \mathbf{R}, s \in \mathbf{S}, \mathbf{d} \in \mathbf{D}$

$$\forall r \in \mathbf{R}, s \in \mathbf{S}, d \in \mathbf{D}$$

- ✓ Feasibility with metric bounds offers
 - Flexibility Speed (< 2 sec an iteration)

```
v_3(BSP) + w_4(PCC)
ements"
```

- **D**_{TSE} *b*_{NSE} *b*_{BSP} *ib_{PCC}*

Impact/Results

Implementation Results:

Effect on Bad Sleep Patterns:

Effect on Night Shift Equity:

Conclusions - With our optimization based decision support tool we are able to:

We thank the Center for Healthcare Engineering and Patient Safety, The Seth Bonder Foundation, The Doctors Company Foundation, Summer Undergraduate Research Opportunity, and the UMHS Pediatric Emergency Department for supporting this work. We also want to thank Young-Chae Hong, Zak Vershure, Jonathan Mogannam, Luke Stumpos, Matt Rouhana, Nate Janes, Ajaay Chandrasekaran, and Eli Sherman for their continued help.

Reduced time to create schedules

Statistically significant improvement in 3 of 4 metrics

Significantly reduce time to build monthly schedules Improve metrics for generated schedules

Acknowledgements