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Motivation

• Elective surgery scheduling is a di�cult and com-
putationally challenging problem, especially when
modeling both the surgical and recovery stages.

• Ignoring this coupling can result in resource
overutilization, which can

� delay consecutive surgeries
� compromise patient safety

• The lack of su�ciently fast methods understand-
able by hospital personnel causes ine�ciency for
important an expensive resources.

Stages of the Surgical Process

1. Check-in

2. Pre-op

3. Operating Room (OR)

4. Post-anesthesia care
unit (PACU)

5. Transfer

Our focus:

OR1

OR2

...

ORR

PACU

Problem Features

We formulated this problem as a mixed integer pro-
gram (MIP) that we call MIP[OR,PACU] with the
objective of minimizing the

• �xed cost of opening the ORs (cf )

• variable cost of OR overtime (cv)

• variable cost of surgeon elapsed time (cs)

Constraints considered:

• OR availability

• PACU bed availability

• recovery starts in PACU right after surgery

• patient-surgeon assignment respected

• surgeons perform all their cases consecutively

Solution Methods

We solve the problem using a novel 2-phase heuristic
that �rst assigns surgeons to ORs, and then se-
quences surgeries and surgeons. To provide a
solvable and near optimal benchmark, we simplify
MIP[OR,PACU] by decomposing it into two steps
similar to the phases of the 2-phase heuristic. We
refer to this as the decomposition heuristic.

2-Phase Heuristic: Theoretical Analysis

Phase 1 - longest processing time �rst heuris-
tic (LPT): surgeon-to-OR assignments.

• Use LPT with respect to surgeon block durations
(i.e., group of surgeries that are performed by the
same surgeon), for �xed number of ORs.

• Exhaustive search through the number of ORs
available.

Theorem 1. For any instance where the planned

session length of each OR is S, we have

CLPT

C∗
≤ 1 +

Scv

12cf
,

where CLPT is the cost of the schedule given by

LPT, and C∗ is the cost of the optimal solution.

Moreover, this bound is tight for every even num-

ber of ORs.

Phase 2 - di�erence heuristic (DH): surgery &
surgeon sequencing.

• Pick the surgery to be �rst that would cause the
most potential blocking.

• Comparing the current patient's recovery duration
(ri) to potential next patients' surgery duration
(dj), pick patient that will cause the least blocking.

Theorem 2. Letting

Di = max
j:i 6=j
{(ri − dj)

+} − min
j:i 6=j
{(ri − dj)

+},

then for any instance we have

CDH − C∗ ≤ cs

(
I∑

i=1

Di −min
i

Di

)
,

where CDH is the cost of the schedule given by

DH, and C∗ is the cost of the optimal solution.

Moreover, this bound is tight.

Theorem 3. The DH gives an optimal schedule

for any instance where the number of cases as-

signed to a single surgeon is two.

2-Phase Heuristic: Empirical Analysis

To evaluate heuristic per-
formance, the following
formula was used:

CHeuristic − C∗

C∗
· 100%

LPT DH
Average performance 0.42% 0.70%

Worst-case performance 6.99% 30.30%
% of time optimal 77.41% 95.19%

Comparison of the 2-Phase & Decomposition Heuristics Via Simulation

Similarly to the 2-phase heuristic, the decomposition
heuristic has two steps:

1. Assign surgeons to ORs ignoring the PACU using a
MIP we call MIP[OR].

2. Fixing the decisions made in step 1, sequence surg-
eries and surgeons considering PACU resources using
MIP[OR,PACU].

Moreover we obtain a lower bound for MIP[OR,PACU]
from step 1 and the data. Deterministic schedules are
evaluated under uncertainty using a discrete event simu-
lation model, where surgery and recovery duration distri-
butions are surgeon and case speci�c.
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Case Study: General, Orthopedic & Urology Services

We sampled from 14 months of data. The number of surgeries per instance day varied from 15 to 20 with a
mean of 18, the number of ORs used varied from 4 to 7 with a mean of 6, and the number of surgeons varied
from 6 to 11 with a mean of 8. Surgery durations varied from 60 to 375 minutes with a mean of 166 minutes
(including turnover). Recovery durations varied from 75 to 210 minutes with a mean of 133 minutes.

The half width of the 95% con�dence interval of the mean simulation cost was less than 1.2% in all instances.

• Based on our results, surgery and re-
covery duration percentiles used in the
deterministic setting were 60 and 70, re-
spectively.

The 2-phase heuristic was

• within 10% of the decomposition
heuristic in 93% of the test instances;

• within 5% of the decomposition heuris-
tic in 74% of the test instances.
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Comparison based on the lower bound:

2-Phase Heuristic
Decomposition

Heuristic
Average performance 6% 1%

Worst-case performance 27% 9%
% of time optimal solution found 26% 86%

Comparison based on OR blocking:

2-Phase Heuristic
Decomposition

Heuristic
Avg OR time used for blocking 0.05% 0.27%
Max OR time used for blocking 0.34% 3.16%

Conclusions

1. The 2-phase heuristic has a tight worst-case performance bound for each of its phases.

2. The 2-phase heuristic performs very well both in the deterministic and stochastic settings in terms of cost,
when compared to the decomposition heuristic.

3. Under uncertainty the 2-phase heuristic performs well when compared to the decomposition heuristic in
terms of OR blocking.

4. Hospitals can realize substantial bene�ts without sophisticated optimization software implementations.


