

2015 Healthcare Engineering and Patient Safety Symposium

Improving Patient Flow in an Outpatient Infusion Center

Pamela Martinez Villarreal¹, Matthew Rouhana¹, Prof. Amy Cohn¹, Carolina Typaldos²

1. Department of Industrial and Operations Engineering, 2. University of Michigan Comprehensive Cancer Center

Lab Process Analysis

Background:

- Lab results needed: (1) by provider before clinic appointment to assess patient and (2) by pharmacy to initiate drug preparation/infusion process
- Concerned about (1) patient waiting time (2) balanced phlebotomist workload (3) lab results being available within 1 hour

Methods:

- Workflow analysis and time study of blood draw area
- Discrete event simulation of patient flow through area
- Table Top Simulation for education and brainstorming

Findings:

Step	Mean Time (Std Dev) in Minutes
Patient waits for check-in	2.67 (3.92)
Check-in	3.27 (2.15)
Patient waits for call back	4.38 (5.64)
Blood draw	Vein : 5.11 (3.75)
	Port: 13.28 (4.64)
Batch	15.16 (4.15)
Prepare and send capsule	1.49 (1.03)

- Total processing time (blood draw and lab analysis) exceeds one hour threshold (blood draw alone accounts for **34.12 min**, on average)
- Current Work: Simulation will allow us to test and measure the impact of different "what if" scenarios on the patient flow

Pharmacy Pre-mix Tool

Background:

- Infusion drugs are expensive and their use uncertain (e.g. patient cancellation). Thus, pharmacy does not prepare most drugs in advance
- "Pre-mixing" may help improve patient waiting times/workload balance **Methods:**
- Collected and analyzed data on prices, treatment times, deferral rate, etc.

Factor	Effect on Priority
Drug cost	Low cost → Higher priority
Probability of deferral or dosage change	Low probability → Higher priority
Number of patients receiving drug	Higher number of patients -> Higher priority

Current Work: Developing optimization model to determine which drugs should be prepared in advance

Maximize:

Trade-off between projected savings (wait time and workload) vs. risk of drug waste

Subject to:

Capacity: You can only make X amount of drugs at a time Production: Each dose can only be made once Time: Drugs have to be made within the pre-mix period

Chemotherapy Infusion Scheduling

Background:

- Patients wait ~45 minutes after arrival at infusion until being seated in a chair, due to high treatment time variability
- Possible Solution: Improved scheduling of infusion patients could result in reduced total length of operations and patient wait time

Methods:

- Considering patient acuity, age, and other characteristics can be used to tailor appointment lengths to each patient
- Using appointment templating, more consistent and reliable schedules can be created for patients

Findings:

- Allowing extra time for highly variable treatments and increasing appointment lengths in the middle of the day help to prevent and recover from propagating delays
- Next Steps: Incorporate patient acuity into model, develop and implement scheduling guidelines

Acknowledgements

This research is generously supported by the Center for Healthcare Engineering and Patient Safety, the Seth Bonder Foundation, the Doctors Company Foundation, the U of M College of Engineering SURE Program, and the UMHS Comprehensive Cancer Center.

Clinical Collaborators: Dr. Marian Grace Boxer, Diane Drago, Corinne Hardecki, Jennifer Mathie, Carol McMahon, Harry Neusius, Kelly Procailo, Renee Stoklosa, Irene Turkewycz, Dr. Alon Weizer

Student Collaborators: Hassan Abbas, Jeremy Castaing, Ajaay Chandrasekaran, Chhavi Chaudhry, Madalina Jiga, Jonathon McCormick, Donald Richardson, Stephanie See, Brooke Szymanski, Jonathan Zhou