More than half require chemotherapy
~1.6 million estimated cases in 2015

Phlebotomy Processing

What is Pre-mix policy

Determining an Optimal Schedule for Pre-Mixing Chemotherapy Drugs

Donald Richardson1, Amy Cohn PhD1, Alon Weizer MD2, Carolina Typaldos2, Kelly Procailo PharmD2
University of Michigan1, University of Michigan Comprehensive Cancer Center2

Problem Statement

• Cancer
 – Second leading cause of death in the U.S.
 – ~1.6 million estimated cases in 2015
 – More than half require chemotherapy treatment
• Infusion centers
 – Increased outpatient demand leads to undesirable outcomes such as:
 • Increased patient waiting times
 • Overworked staff

Probability of Wasting a Drug

Let \(\text{Prob(Deferral/no show)} = p \)
Assume \(m_d \) = patients scheduled to receive drug \(d \) on a given day
Then the probability of wasting the \(n \)-th dose of the drug \(d \) is given by

\[
P_d(n) = \sum_{i=1}^{m_d} (1-p)^{n-1} p^{m_d-n+1}
\]

What if the probability of deferral or no show depend on age, sex, treatment, type of cancer, etc.? Let \(\text{Prob(Deferral/no show of patient } i = p_i \)
Let \(S_d \) = set of patients scheduled to receive drug \(d \)
\(S_d = \{1,2,...,m_d\} \)

\[
\text{Prob(Wasting 1st dose)} = \prod_{i=1}^{m_d} p_i
\]

\[
\text{Prob(Wasting 2nd dose)} = \prod_{i=1}^{m_d} (1-p_i) \prod_{j \neq i} (p_j) + \prod_{i=1}^{m_d} p_i
\]

\[
\text{Prob(Wasting 3rd dose)} = \prod_{i=1}^{m_d} (1-p_i)(1-p_j) \prod_{k \neq i,j} (p_k) + \prod_{i=1}^{m_d} (1-p_i) \prod_{j \neq i,k} (p_j) + \prod_{i=1}^{m_d} p_i
\]

Model

Sets
\(D \) = set of drugs (e.g. 50 mg of Tamoxifen)
\(x_d^t \) = 1 if we mix the \(n \)-th dose of drug \(d \) at time \(t \) or \(n \)th
\(x_d^t \) = 0 if we don’t mix the \(n \)-th dose of drug \(d \) or no

Parameters
\(q_d \) = the reward or savings for mixing drug \(d \)
\(T \) = the total time units for the proctor period
\(c_d \) = the cost of drug \(d \)
\(N_d \) = the number of doses needed for each drug based on the scheduled patients
\(L \) = pro-mix capacity for any pro-mix period
\(M \) = a very large number
\(E^w \) = (waste cost) = \(c_x p_x \)
\(\max \sum d \sum t \left(\frac{q_d}{x_d^t} - E^w \right) x_d^t \)

Objective
Maximize the difference between our expected reward and waste cost

Constraints
\[
\sum d x_d^t = 1 \quad \forall d, n, t \quad (1)
\]

\[
\sum d x_d^t \leq T \quad \forall d, n, t \quad (2)
\]

\[
\sum d x_d^t \leq M \cdot y_d^t \quad \forall d, n, t \quad (3)
\]

\[
\sum d x_d^t \leq L \quad \forall t \quad (4)
\]

\[
\sum d x_d^t \leq 1 \quad \forall d, n, t \quad (5)
\]

(1) Relates our auxiliary variable to the decision variable
(2) If you don’t make the previous dose you can’t make the next
(3) Does ordering
(4) Only make \(L \) at a time
(5) Can only make the \(n \)-th dose of a drug once

Future Work

Static Model

• Include the hang-by time for each drug
• Include the preparation time for each drug
• Continue working with data collection to run logistical regression
• How to categorize various types of patients

Dynamic Model

Goal: To find an optimal drug-mixing schedule throughout the day and update as we observe patient deferrals

Acknowledgements

Collaborators: Pamela Martinez, Matt Rouhana, Ajay Chandrasekaran, Jonathan Zhou, Hassan Abbas
This research is generously supported by the Center for Healthcare Engineering and Patient Safety and the Rackham Merit Fellowship Program.