

2015 Healthcare Engineering and Patient Safety Symposium

Determining an Optimal Schedule for Pre-Mixing Chemotherapy Drugs

Donald Richardson¹, Amy Cohn PhD¹, Alon Weizer MD², Carolina Typaldos², Kelly Procailo PharmD² University of Michigan¹, University of Michigan Comprehensive Cancer Center²

Problem Statement

- Cancer
- Second leading cause of death in the U.S.
- − ~1.6 million estimated cases in 2015
- More than half require chemotherapy treatment
- Infusion centers
 - Increased outpatient demand leads to undesirable outcomes such as:
 - Increased patient waiting times
 - Overworked staff

What is Pre-Mix?

- Anytime you mix a drug before a patient is deemed ready to receive it
- Generally you don't pre-mix drugs due to risk in wastage cost
- Consider the trade off between waste cost and reduced patient waiting time

UMCCC current Pre-mix policy

- Will only mix drugs during a fixed window of time before patients arrive
 - 6am-8am
- Have a fixed list of drugs they are willing to mix
 - Based on cost and common use

Probability of Wasting a Drug

Let Prob (Deferral/no show) = p

Assume m_d = patients scheduled to receive drug d on a given day Then the probability of wasting the n^{th} dose of drug d is given by

$$P_d(\mathbf{n}) = \sum_{i=1}^{n} {m_d \choose m_d - i + 1} p^{m_d - i + 1} (1 - p)^{i - 1}$$

What if the probability of deferral or no show depended on age, sex, treatment, type of cancer, etc.?

Let Prob (Deferral/no show of patient i) = p_i Let S_d = set of patients scheduled to receive drug d $\therefore S_d = \{1, 2, ..., m_d\}$

Model

Parameters

the reward or savings for mixing drug *d*

the cost of drug *d*

a very large number

the total time units for the premix period

the number of doses needed for each drug

pre-mix capacity for any pre-mix period

based on the scheduled patients

 $E_n^d[\text{waste cost}] = c_d P_d(w)$

 $\max \sum \sum \sum (\Delta_d - E_n^d [\text{waste cost}]) * x_{nt}^d$

<u>Sets</u>

D: set of drugs d (e.g. 50 mg of Taxotere)

<u>Variables</u>

 $x_{nt}^{d} = \begin{cases} 1 & \text{if we mix the } n \text{th dose of drug } d \text{ at time } t \\ 0 & \text{o. w.} \end{cases}$

 $y_n^d = \begin{cases} 1 & \text{if we don't mix the } n \text{th dose of drug } d \\ 0 & \text{o.w.} \end{cases}$

Objective

Maximize the difference between our expected reward and waste cost

Constraints

$$\sum_{t} x_{nt}^{d} + y_{n}^{d} = 1 \qquad \forall d, n \qquad (1)$$
$$y_{n}^{d} \leq y_{n+1}^{d} \qquad \forall d, n = 1, ..., n[d] - 1 \qquad (2)$$

$$\sum t x_{nt}^d \le \sum t x_{(n+1)t}^d + M * y_{n+1}^d \qquad \forall d, n \qquad (3)$$

$$\sum_{d} \sum_{n} x_{nt}^{d} \le L \tag{4}$$

$$\sum_{t} x_{nt}^{d} \le 1 \qquad \forall d, n \qquad (5)$$

- (1) Relates our auxiliary variable to the decision variable
- (2) If you don't make the previous dose you cant make the next
- (3) Does ordering
- (4) Only make L at a time
 - Can only make the nth dose of a drug once

Results

Suppose we have patients scheduled to receive 15 different drugs. Below is a sample of the drugs highlighting the variability in price.

Scenario 2

Drug	Hang by time	Price	Currently pre-mixed?	Treatment for
Carboplatin	12 hrs	\$ 2.52	Yes	Cancer of the ovaries, head, and neck
Paclitaxel	12 hrs	\$ 4.10	Yes	Cancer in the lungs, ovary, or breast
Cyclophosphamide	12 hrs	\$ 879.00	Yes	Leukemia and lymphomas, and nephrotic syndrome
Folotyn	12 hrs	\$ 4,637.21	No	T-cell lymphoma
Adcetris	12 hrs	\$ 6,516.00	No	Treats Hodgkin's lymphoma and systemic anaplastic large cell lymphoma
<u>AMPL Results</u>				

Scenario 3

Scenario 4

Scenario 5

Reward	1 for all drugs	11.67 for all drugs	11.67 for a drugs		7 for all rugs	11.67 for all drugs	
# of Doses	2 for each drug	2 for each drug	2 for each d	riio		1-2 lower cost3-5 higher cost	
P values	p=.25 for all drugs	p=.25 for all drugs	inverse to confidence of drug range from .02 to	ging p=.2	5 for all rugs	inverse to cost of drug ranging from .02 to .30	
Drugs	Cost	Scenario 1	Scenario 2	Scenario 3	Scenario	4 Scenario 5	
A	\$ 1.61	2	2	2		2 —	
В	\$ 2.52	1	2	2		2 1	
С	\$ 4.10	1	2	2		1 —	
D	\$ 6.80	1	1	1		1 1	
E	\$ 16.56		1	1		1 —	
F	\$83.40		_	_	-		
G	\$ 91.54		_	_	-		
Н	\$ 155.56		_	_	-		
I	\$ 367.02		_	_	-		
J	\$ 698.60		_	_	_	- 1	
K	\$879.00		_	_		1 2	
L	\$ 1,158.84		_	_	_	- 1	

Future Work

Static Model

TOTAL

Include the hang-by time for each drug

\$ 2,389.39

\$ 4,637.21

\$6,516.00

- Include the preparation time for each drug
- Continue working with data collection to run logistical regression
- How to categorize various types of patients

Dynamic Model

Goal: To find an optimal drug-mixing schedule throughout the day and update as we observe patient deferrals

Acknowledgements

Collaborators: Pamela Martinez, Matt Rouhana, Ajaay Chandrasekaran, Jonathan Zhou, Hassan Abbas

This research is generously supported by the Center for Healthcare Engineering and Patient Safety and the Rackham Merit Fellowship Program.