SCHEDULING FOR MEDICAL RESIDENTS

William Pozehl MSE Ed O'Brien MD Young-Chae Hong MSE

Presentation outline

- Background
- Shift scheduling
- Analysis of schedule quality
- Rotation scheduling
- Conclusions and future work

Presentation outline

- Background
- Shift scheduling
- Analysis of schedule quality
- Rotation scheduling
- Conclusions and future work

Medical training at UMHS

Mott Pediatric Emergency Room

- Level I Pediatric Trauma Center
- About 25,000 visits per year
- Staffed by residents from 5 programs
- Pediatrics
- Medicine-Pediatrics
- Family Medicine
- Emergency Medicine
- Psychology

Importance of scheduling

Traditional approach

- Hand-built by chief resident or administrator
- Benefits
- Intimate knowledge
- Administrative consolidation
- Drawbacks
- Time-consuming
- Cognitively-demanding

Presentation outline

- Background
- Shift scheduling
- Analysis of schedule quality
- Rotation scheduling
- Conclusions and future work

Decision variables

Whether to assign a certain resident to a certain shift on a certain day

$\mathbf{x}_{\mathrm{rsd}} \in\{\mathbf{0}, \mathbf{1}\}, \quad \forall \mathbf{r} \in \mathbf{R}, \mathbf{s} \in \mathbf{S}, \mathbf{d} \in \mathbf{D}$

Shift coverage

Must provide sufficient shift coverage for every day and shift
$\sum \mathbf{x}_{\text {rsd }}=\mathbf{1}, \forall \mathbf{d} \in \mathbf{D}, \mathrm{s} \in \mathbf{S} \backslash\{$ flex, EOM, EMSr $\}$ $\mathbf{r} \in \mathbf{R}$

$\sum_{\mathbf{r} \in \mathbf{R}} \mathbf{x}_{\mathrm{rsd}}=\mathbf{0}, \quad \forall \mathbf{d} \in \mathbf{D}, \mathbf{s} \in\{\mathbf{E M S r}\}$

External requirements

Cannot create work assignments that conflict with outside commitments

$$
\mathbf{x}_{\mathrm{rsd}}=\mathbf{0}, \forall \mathbf{r} \in \mathbf{R}, \mathbf{d} \in \mathbf{D}
$$

$s \in\{$ clinic, conference, vacation $\}$

Pediatric paired shifts

Ensure that at least I of 2 shifts in a pair is covered by a Pediatric resident each day

$$
\forall \mathbf{d} \in \mathbf{D}, \mathbf{P}=\{\{7 \mathrm{a}, 9 \mathbf{a}\},\{4 \mathrm{p}, 5 \mathrm{p}\},\{8 \mathrm{p}, 11 \mathrm{p}\}\}
$$

Senior-only shifts

Certain shifts must be covered by senior-level residents

Work-rest rules

Residents must get at least I0 hours off-duty between ending one shift and beginning another

$$
\begin{aligned}
\mathbf{x}_{\mathbf{r s d}}+ & \sum_{\substack{\left(s^{\prime}, \mathbf{d}^{\prime}\right) \in \\
\{\text { within } 10 \text { hrs of }(\mathbf{s}, \mathbf{d})\}}} \mathbf{x}_{\mathrm{rs}^{\prime} \mathbf{d}^{\prime}} \leq \mathbf{1}, \\
& \forall \mathbf{r} \in \mathbf{R}, \mathbf{s} \in \mathbf{S}, \mathbf{d} \in \mathbf{D}
\end{aligned}
$$

Multi-criteria objective

- Multi-criteria schedule
- Total shift equity (TSE)
- Night shift equity (NSE)
- Bad sleep patterns (BSP)
- Post-continuity clinic shifts (PCC)

Multi-objective Mathematical Programming

Multi-criteria objective

- Optimization problem

$$
\begin{array}{ll}
\text { Min } w_{1}(T S E)+w_{2}(N S E)+w_{3}(B S P)+w_{4}(P C C) \\
\text { s. } \mathbf{t} . & \text { "rules } / \text { requirements" } \\
& x_{r s d} \in\{0,1\}
\end{array}
$$

- Quantifying preferences $\left(w_{i}\right)$ is difficult
- Subjective weights
- Alternative measures
- Non-linearity

Multi-criteria objective

- Feasibility Optimization problem

$$
\begin{array}{ll}
\text { Min } w_{1}(T S E)+w_{z}(N S E)+w_{3}(B S P)+w_{4}(P C C) \\
\text { s.t. } & \text { "rules } / \text { requirements" } \\
& x_{r S d} \in\{0,1\} \\
& \boldsymbol{l} \boldsymbol{b}_{\text {TSE }} \leq(\boldsymbol{T S E}) \leq \boldsymbol{u} \boldsymbol{b}_{\text {TSE }} \\
& \boldsymbol{l} \boldsymbol{b}_{\text {NSE }} \leq(\boldsymbol{N S E}) \leq \boldsymbol{u} \boldsymbol{b}_{\text {NSE }} \\
\boldsymbol{l} \boldsymbol{b}_{\text {BSP }} \leq(\boldsymbol{B S P}) \leq \boldsymbol{u} \boldsymbol{b}_{\text {BSP }} \\
& \boldsymbol{l b _ { P C C } \leq (\boldsymbol { P C C }) \leq \boldsymbol { u } \boldsymbol { b } _ { P C C }} \\
\hline
\end{array}
$$

- Benefits of a feasibility problem
- Flexibility
- Speed: < 2 seconds per iteration
- Given: 20 residents / 7 shifts daily / 35 days

Iterative improvements

Resident Name	Number of Shifts	Number of Night Shifts	Number of Post-CC Shifts	Number of Bad Sleep Patterns
Smith	$8(7,9)$	$2(2,3)$	$0(0,1)$	$0(0,0)$
Sanchez	$8(7,10)$	$2(2,3)$	$0(0,1)$	$0(0,0)$
Chen	$8(7,9)$	$2(2,3)$	$1(0,1)$	$0(0,0)$
Shah	$14(13,15)$	$4(3,5)$	$1(0,1)$	$0(0,0)$
\vdots	\vdots	\vdots	\vdots	\vdots

Presentation outline

- Background
- Shift scheduling
- Analysis of schedule quality
- Rotation scheduling
- Conclusions and future work

Implementation results

- Reduced time to create schedules

- Statistically significant improvement in 3 of 4 major metrics

Total shift equity

$\begin{array}{llll}\text { 20IO-II: } & 0.0761 \pm 0.0214 & \text { 20I3-I4: } & 0.0801 \pm 0.0231 \\ \text { 2012-I3: } & 0.0665 \pm 0.0367 & \text { 20I4-I5: } & 0.0743 \pm 0.0238\end{array}$

Bad sleep patterns

Implementation results

- Months with poor metrics tend to have:
- Fewer residents overall
- Fewer senior residents
- Fewer Pediatrics residents

Simulation study

Percentage Feasible (of 2,000 Iterations)

Simulation study

Percentage Feasible (of 2,000 Iterations)

Simulation study

Presentation outline

- Background
- Shift scheduling
- Analysis of schedule quality
- Rotation scheduling
- Conclusions and future work

Rotation scheduling

- Assigning residents to services over the course of the year
- Usually 2- or 4-week-long rotations
- Residents given opportunity to make time preference requests

Service pairs

- An ordered couplet of services that may be worked during the same month
- Combinations of service pairs are classified as "hard" or not

Service Pair

July

${ }^{\text {st }}$ Half
 $2^{\text {nd }}$ Half

NICU General

Decision variables

Whether to assign a certain resident to a certain service pair on a certain month

$$
\mathbf{x}_{\mathbf{r p m}} \in\{\mathbf{0}, \mathbf{1}\}, \quad \forall \mathbf{r} \in \mathbf{R}, \mathbf{p} \in \mathbf{P}, \mathbf{m} \in \mathbf{M}
$$

Month	July		August		September	
Paige Mollison	$1^{\text {st }}$ Half	$2^{\text {nd }}$ Half	$1^{\text {st }}$ Half	$2^{\text {nd }}$ Half	$1^{\text {st }}$ Half	$2^{\text {nd }}$ Half
	General	General	Heme Onc	NICU	General	Vacation
	Hard $=0$		Hard $=1$		Hard $=0$	
Luke Stumpos	$1^{\text {st }}$ Half	$2^{\text {nd }}$ Half	$1^{\text {st }}$ Half	$2^{\text {nd }}$ Half	$1^{\text {st }}$ Half	$2^{\text {nd }}$ Half
	Heme Onc	NICU	General	General	PER	Night Team
	Hard = 1		Hard $=0$		Hard = 1	

Monthly rotation assignment

Each resident is assigned one service pair per month

Service coverage

Each service must have between a minimum and maximum number of residents at all times

$$
\begin{aligned}
\text { LBRes }_{\mathbf{s m}} \leq & \sum_{\mathbf{p} \in \mathbf{P}_{\mathbf{s h}}} \mathbf{x}_{\mathbf{r p m}} \leq \text { UBRes }_{\mathbf{s m}} \\
& \forall \mathbf{s} \in \mathbf{S}, \mathbf{m} \in \mathbf{M}, \mathbf{h} \in\{\mathbf{1}, \mathbf{2}\}
\end{aligned}
$$

Educational requirements

Each resident must have between a minimum and maximum number of months on each service throughout the year

LBMonths $_{\mathrm{rs}} \leq \sum_{\mathbf{p} \in \mathbf{P}} \sum_{\mathbf{m} \in \mathrm{M}} \mathbf{q}_{\mathbf{p s}} \mathbf{x}_{\mathrm{rpm}} \leq$ UBMonths $_{\mathrm{rs}}$,
$\forall \mathbf{r} \in \mathbf{R}, \mathbf{s} \in \mathbf{S}$

Triple-hard sequences

Track when a resident works a sequence of three hard pairs in a row and limit the total triple-hard sequences anyone can work

$$
\begin{aligned}
& \mathbf{b}_{\mathbf{t}} \mathbf{x}_{\mathrm{rpm}}+\mathbf{b}_{\mathbf{t}} \mathbf{x}_{\mathrm{rp}(\mathrm{~m}+1)}+\mathbf{b}_{\mathrm{t}} \mathbf{x}_{\mathrm{rp}(\mathrm{~m}+2)} \leq \mathbf{Y}_{\mathrm{rm}}+2 \\
& \forall r \in R, m \in\{1, \ldots,|M|-2\}
\end{aligned}
$$

$\sum_{\mathbf{m} \in \mathbf{M}} \mathbf{Y}_{\mathrm{rm}} \leq$ UBHard $_{\mathbf{r}}, \quad \forall \mathbf{r} \in \mathbf{R}$

Implementation results

- Two-phase schedule creation
- Senior phase
- Intern phase
- Satisfied 238/242 (98.3\%) of time preference requests
- Speed: < 3 minutes per iteration

Presentation outline

- Background
- Shift scheduling
- Analysis of schedule quality
- Rotation scheduling
- Conclusions and future work

Conclusions

- Significantly reduced time and improved metrics for ED shift schedules
- Lingering scheduling challenges may derive from the rotation schedule
- Significantly improved satisfaction of time preferences for rotation schedules

Future work

- Pareto frontier of shift schedule options
- Maximally feasible sets of vacations and time preferences
- Extend rotation schedule model to other residencies

Acknowledgements

- Univ. of Michigan Pediatric Residency Program
- The Doctors Company Foundation
- The Seth Bonder Foundation

Questions [?] \& Comments [!]

William Pozehl pozewil@umich.edu

Dr. Ed O'Brien

 obriene@med.umich.edu
Prof.Amy Cohn

 amycohn@med.umich.edu
Young-Chae Hong hongyc@umich.edu

For more information on collaborative projects between CHEPS and the C.S. Mott Children's Hospital Emergency Room, please attend:
I. Simulating a Medical Observation Unit for a Pediatric Emergency Dept - Mark Grum Today, I2:30-2:00 PM session, Emergency Care
2. Patient Flow in a Pediatric Emergency Department - Hassan Abbas \& Brooke Szymanski
Friday, 8:00-9:30 AM session, Student Research Projects in Healthcare Operations

Implementation Process

Total shifts

- Must provide adequate educational experience for every resident
$\begin{array}{ll}\text { LBShifts }_{\mathrm{r}} \leq \sum_{\mathrm{s} \in S} \sum_{d \in D} x_{r s d} \leq \text { UBShifts }_{\mathrm{r}}, & \forall r \in R \\ \text { LBNites }_{\mathrm{r}} \leq \sum_{\mathrm{s} \in S} \sum_{d \in D} x_{r s d} \leq \text { UBNites }_{\mathrm{r}}, & \forall r \in R\end{array}$

