

SCHEDULING FOR MEDICAL RESIDENTS

William Pozehl MSEAmy Cohn PhDEd O'Brien MDYoung-Chae Hong MSE

Presentation outline

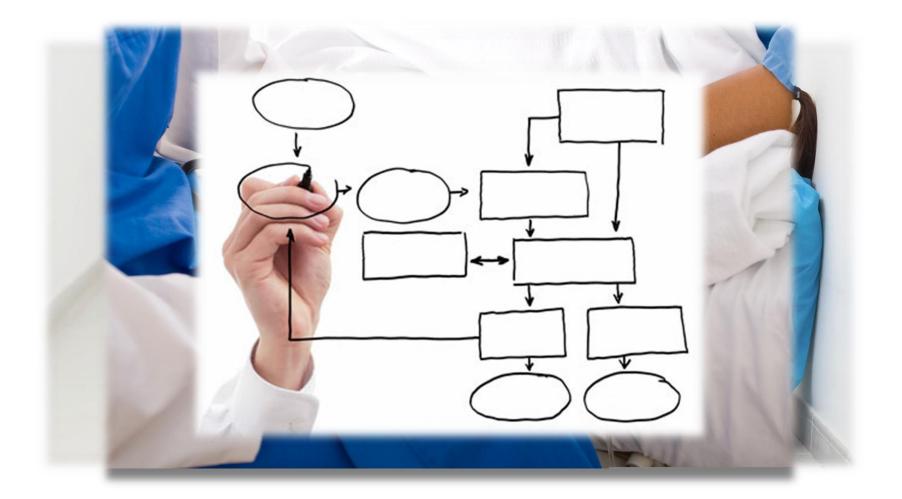
- Background
- Shift scheduling
- Analysis of schedule quality
- Rotation scheduling
- Conclusions and future work

Presentation outline

Background

- Shift scheduling
- Analysis of schedule quality
- Rotation scheduling
- Conclusions and future work

Medical training at UMHS


- Level I Pediatric Trauma Center
- About 25,000 visits per year
- Staffed by residents from 5 programs
 - Pediatrics
 - Medicine-Pediatrics
 - Family Medicine
 - Emergency Medicine
 - Psychology

Importance of scheduling

Traditional approach

- Hand-built by chief resident or administrator
- Benefits
 - Intimate knowledge
 - Administrative consolidation
- Drawbacks
 - Time-consuming
 - Cognitively-demanding

Presentation outline

Background

Shift scheduling

- Analysis of schedule quality
- Rotation scheduling
- Conclusions and future work

Whether to assign a certain resident to a certain shift on a certain day

 $\mathbf{x_{rsd}} \in \{\mathbf{0}, \mathbf{1}\}, \qquad \forall \mathbf{r} \in \mathbf{R}, \mathbf{s} \in \mathbf{S}, \mathbf{d} \in \mathbf{D}$

Must provide sufficient shift coverage for every day and shift

$$\begin{split} &\sum_{r\in R} x_{rsd} = 1, \forall \ d\in D, s\in S \backslash \{flex, EOM, EMSr\} \\ &0 \leq \sum_{r\in R} x_{rsd} \leq 1, \qquad \forall \ d\in D, s\in \{flex, EOM\} \\ &\sum_{r\in R} x_{rsd} = 0, \qquad \forall \ d\in D, s\in \{EMSr\} \end{split}$$

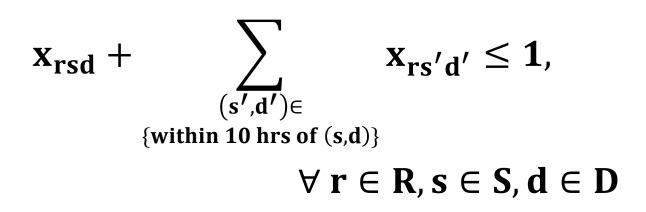
External requirements

Cannot create work assignments that conflict with outside commitments

$$\begin{split} x_{rsd} &= 0, \ \forall \ r \in R, d \in D, \\ s \in \{ \text{clinic, conference, vacation} \} \end{split}$$

Ensure that at least 1 of 2 shifts in a pair is covered by a Pediatric resident each day

$$\begin{split} &\sum_{r \in \{PED\}} \sum_{s \in P} x_{rsd} \geq 1, \\ &\forall \ d \in D, P = \big\{\{7a, 9a\}, \{4p, 5p\}, \{8p, 11p\}\big\} \end{split}$$


Certain shifts must be covered by senior-level residents

$$\sum_{r \in \{interns\}} \sum_{d \in D} x_{rsd} = 0, \qquad \forall \ s \in \{7a, 11p\}$$

Residents must get at least 10 hours off-duty between ending one shift and beginning another

Multi-criteria objective

- Multi-criteria schedule
 - Total shift equity (TSE)
 - Night shift equity (NSE)
 - Bad sleep patterns (BSP)
 - Post-continuity clinic shifts (PCC)

Preferences? Weights? Trade-off?

Multi-objective Mathematical Programming

Multi-criteria objective

• Optimization problem

 $\begin{array}{ll} \operatorname{Min} w_1(TSE) + w_2(NSE) + w_3(BSP) + w_4(PCC) \\ \text{s.t.} & \quad \text{"rules/requirements"} \\ & \quad x_{rsd} \in \{0,1\} \end{array}$

- Quantifying preferences (w_i) is difficult
 - Subjective weights
 - Alternative measures
 - Non-linearity

Multi-criteria objective

• Feasibility Optimization problem

 $\begin{array}{ll} \operatorname{Min} w_1(TSE) + w_2(NSE) + w_3(BSP) + w_4(PCC) \\ \text{s.t.} & \text{"rules/requirements"} \\ x_{rsd} \in \{0,1\} \\ lb_{TSE} \leq (TSE) \leq ub_{TSE} \\ lb_{NSE} \leq (NSE) \leq ub_{NSE} \\ lb_{NSE} \leq (BSP) \leq ub_{BSP} \\ lb_{PCC} \leq (PCC) \leq ub_{PCC} \end{array}$

- Benefits of a feasibility problem
 - Flexibility
 - Speed: < 2 seconds per iteration
 - Given: 20 residents / 7 shifts daily / 35 days

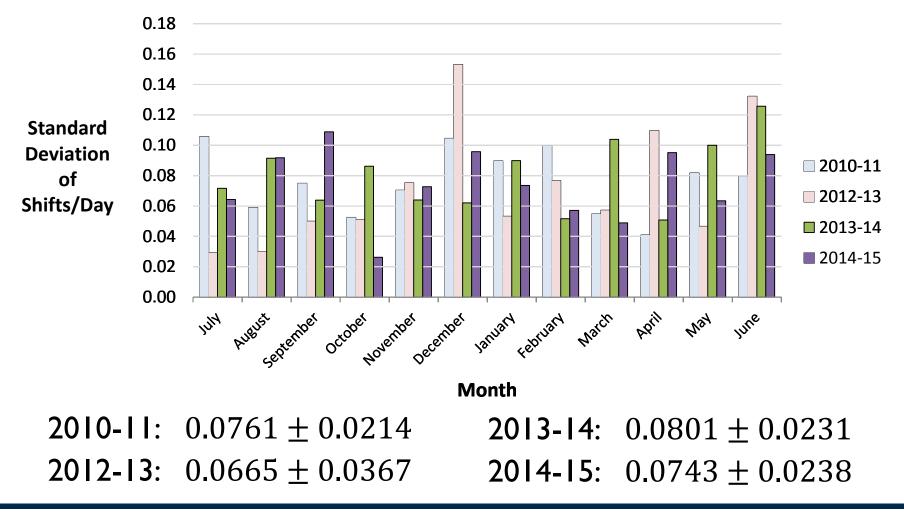
Iterative improvements

Resident Name	Number of Shifts	Number of Night Shifts	Number of Post-CC Shifts	Number of Bad Sleep Patterns
Smith	8 (<mark>7,9</mark>)	2 (<mark>2,3</mark>)	0 (<mark>0,1</mark>)	0 (<mark>0,0</mark>)
Sanchez	8 (<mark>7,10</mark>)	2 (<mark>2,3</mark>)	0 (<mark>0,1</mark>)	0 (<mark>0,0</mark>)
Chen	8 (<mark>7,9</mark>)	2 (<mark>2,3</mark>)	1 (<mark>0,1</mark>)	0 (<mark>0,0</mark>)
Shah	14 (<mark>13,15</mark>)	4 (<mark>3,5</mark>)	1 (<mark>0,1</mark>)	0 (<mark>0,0</mark>)
:	•	:	•	:

Presentation outline

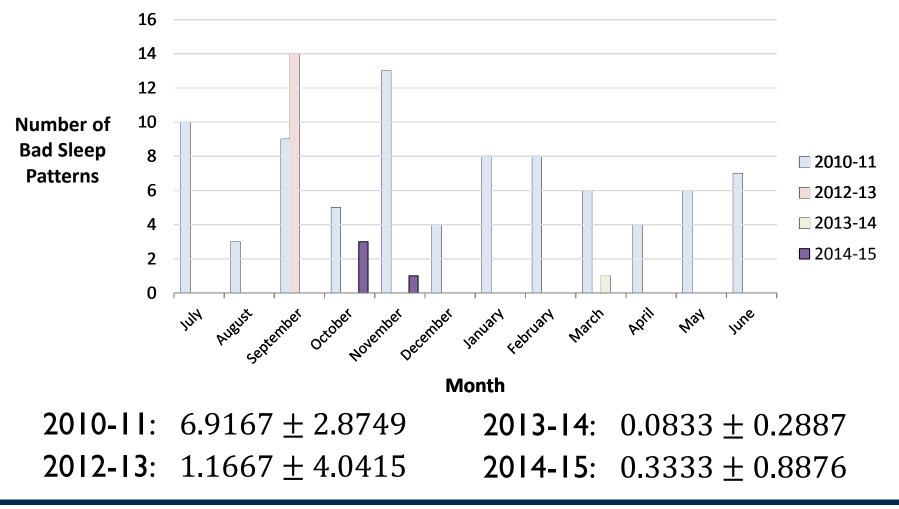
- Background
- Shift scheduling
- Analysis of schedule quality
- Rotation scheduling
- Conclusions and future work

Implementation results


• Reduced time to create schedules

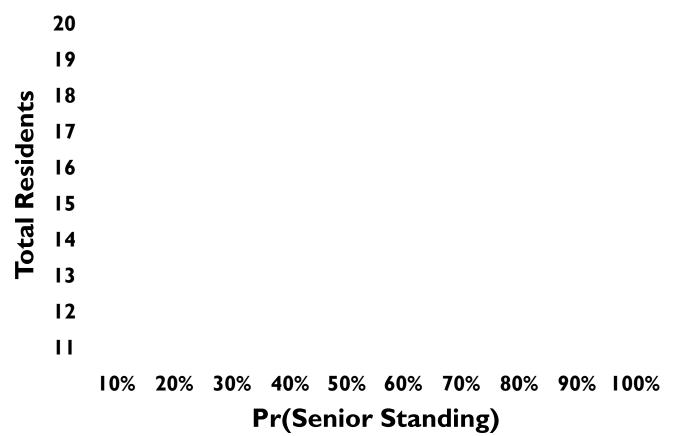
• Statistically significant improvement in 3 of 4 major metrics

Total shift equity



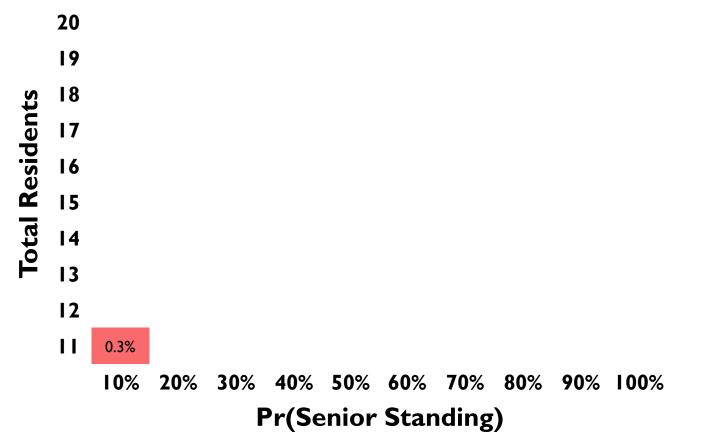
Bad sleep patterns

Implementation results


- Months with poor metrics tend to have:
 - Fewer residents overall
 - Fewer senior residents
 - Fewer Pediatrics residents

Simulation study

Percentage Feasible (of 2,000 Iterations)



Simulation study

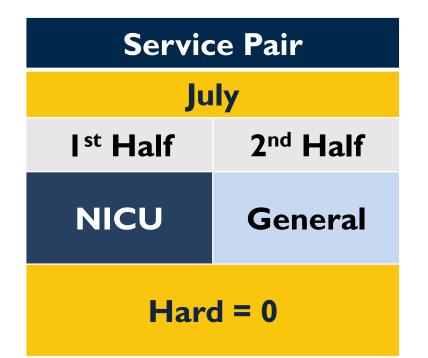
	Percentage Feasible (of 2,000 Iterations)										
	20	5.4%	33.0%	66.8%	84.8%	92.6%	95.9%	95.2%	96.4%	95.7%	96 .1%
Residents	19	6.2%	32.4%	60.7%	7 9 .7%	89.5%	93.1%	94 .0%	93.5%	9 4.2%	94.3%
	18	4.1%	25.8%	55.2%	76.2%	87.6%	88.9%	91.4%	91.1%	9 2.2%	92.6%
	17	3.8%	25.0%	48.8%	71.4%	81.9%	86.4%	89.3%	87.8%	86.9%	89 .1%
esic	16	2.2%	20.0%	45.6%	65.5%	77.0%	81.0%	80.0%	83.3%	82.4%	82.9%
	15	2.1%	16.6%	35.2%	55.7%	69 .2%	75.4%	74.0%	76.2%	76.7%	75.7%
Total	14	I.2%	11.4%	29.2%	47. 9 %	58.9%	63.2%	66.9%	67.9%	67.3%	67.8%
Ĕ	13	0.7%	7.4%	22. 9 %	36.4%	48.5%	55.5%	55.7%	54.4%	56.4%	56.2%
	12	0.6%	6.0%	16.3%	27.2%	34.2%	41.0%	41.8%	40.8%	41.7%	42.9%
	11	0.3%	3.4%	8.8%	15.5%	22.4%	27.5%	27.5%	25. 9 %	28.1%	28.1%
		10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
	Pr(Senior Standing)										

Presentation outline

- Background
- Shift scheduling
- Analysis of schedule quality
- Rotation scheduling
- Conclusions and future work

Rotation scheduling

- Assigning residents to services over the course of the year
- Usually 2- or 4-week-long rotations
- Residents given opportunity to make time preference requests



ERSITY OF MICHIGAN

Service pairs

- An ordered couplet of services that may be worked during the same month
- Combinations of service pairs are classified as "hard" or not

Whether to assign a certain resident to a certain service pair on a certain month

 $\mathbf{x}_{rpm} \in \{\mathbf{0}, \mathbf{1}\}, \qquad \forall r \in \mathbf{R}, p \in \mathbf{P}, m \in \mathbf{M}$

Month	July		August		September		
	1 st Half	2 nd Half	1 st Half	2 nd Half	1 st Half	2 nd Half	
Paige Mollison	General	General	Heme Onc	NICU	General	Vacation	
	Hard = 0		Hard = 1		Hard = 0		
	1 st Half	2 nd Half	1 st Half	2 nd Half	1 st Half	2 nd Half	
Luke Stumpos	Heme Onc	NICU	General	General	PER	Night Team	
otampoo	Hard = 1		Hard = 0		Hard = 1		

Monthly rotation assignment

Each resident is assigned one service pair per month

$$\sum_{p \in P} x_{rpm} = 1, \qquad \forall r \in R, m \in M$$

Each service must have between a minimum and maximum number of residents at all times

$$\begin{aligned} \text{LBRes}_{\text{sm}} &\leq \sum_{p \in P_{\text{sh}}} x_{rpm} \leq \text{UBRes}_{\text{sm}}, \\ &\forall s \in S, m \in M, h \in \{1, 2\} \end{aligned}$$

Each resident must have between a minimum and maximum number of months on each service throughout the year

$$\begin{split} LBMonths_{rs} &\leq \sum_{p \in P} \sum_{m \in M} q_{ps} x_{rpm} \leq UBMonths_{rs}, \\ &\forall r \in R, s \in S \end{split}$$

Track when a resident works a sequence of three hard pairs in a row and limit the total triple-hard sequences anyone can work

$$\begin{aligned} \mathbf{b}_{t}\mathbf{x}_{rpm} + \mathbf{b}_{t}\mathbf{x}_{rp(m+1)} + \mathbf{b}_{t}\mathbf{x}_{rp(m+2)} &\leq \mathbf{Y}_{rm} + 2\\ \forall \ r \in \mathbf{R}, m \in \{1, \dots, |M| - 2\} \end{aligned}$$

$$\sum_{m \in M} Y_{rm} \leq UBHard_{r}, \qquad \forall r \in R$$

Implementation results

- Two-phase schedule creation
 - Senior phase
 - Intern phase

 Satisfied 238/242 (98.3%) of time preference requests

• Speed: < 3 minutes per iteration

Presentation outline

- Background
- Shift scheduling
- Analysis of schedule quality
- Rotation scheduling
- Conclusions and future work

- Significantly reduced time and improved metrics for ED shift schedules
- Lingering scheduling challenges may derive from the rotation schedule
- Significantly improved satisfaction of time preferences for rotation schedules

- Pareto frontier of shift schedule options
- Maximally feasible sets of vacations and time preferences
- Extend rotation schedule model to other residencies

Acknowledgements

- Univ. of Michigan Pediatric Residency Program
- The Doctors Company Foundation
- The Seth Bonder Foundation

Questions [?] & Comments [!]

William Pozehl

pozewil@umich.edu

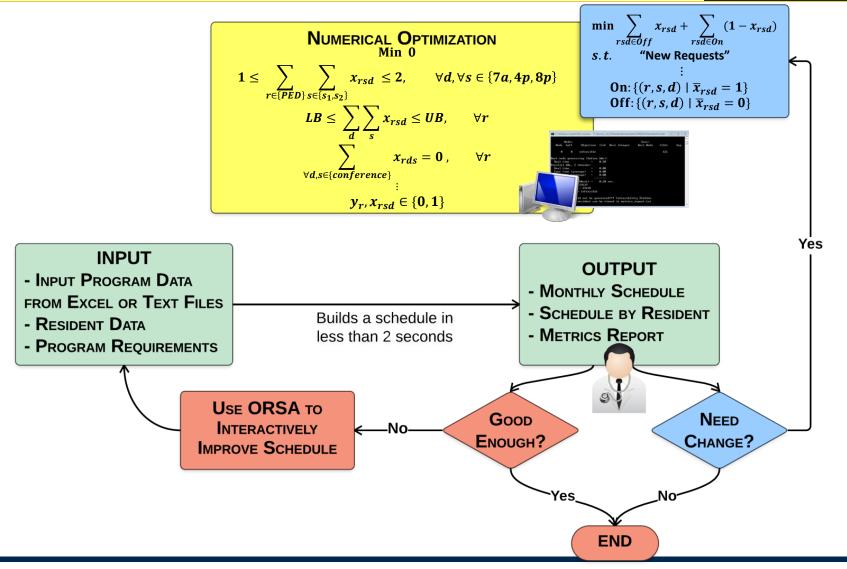
Prof. Amy Cohn amycohn@med.umich.edu

Dr. Ed O'Brien

obriene@med.umich.edu

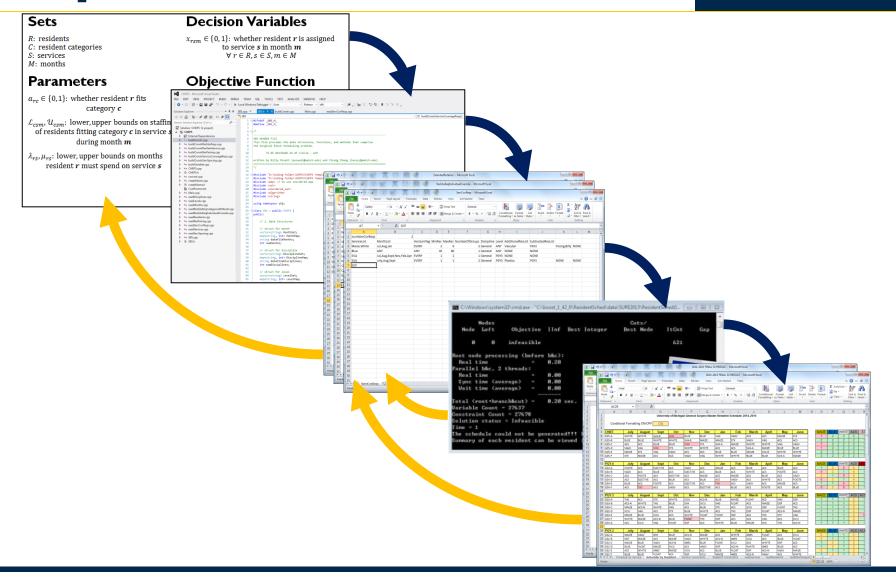
Young-Chae Hong

hongyc@umich.edu


For more information on collaborative projects between CHEPS and the C.S. Mott Children's Hospital Emergency Room, please attend:

- Simulating a Medical Observation Unit for a Pediatric Emergency Dept Mark Grum Today, 12:30 – 2:00 PM session, Emergency Care
- <u>Patient Flow in a Pediatric Emergency Department</u> Hassan Abbas & Brooke Szymanski

Friday, 8:00 – 9:30 AM session, Student Research Projects in Healthcare Operations



Implementation Process

Total shifts

 Must provide adequate educational experience for every resident

$$\begin{split} \text{LBShifts}_{\mathbf{r}} &\leq \sum_{s \in S} \sum_{d \in D} x_{rsd} \leq \text{UBShifts}_{\mathbf{r}}, \qquad \forall \ r \in R \\ \text{LBNites}_{\mathbf{r}} &\leq \sum_{s \in S} \sum_{d \in D} x_{rsd} \leq \text{UBNites}_{\mathbf{r}}, \qquad \forall \ r \in R \end{split}$$

