Coordinated Scheduling of Operating Room and Clinic Time Blocks for Surgical Attendings
 Brian Lemay

University of Michigan
7-31-2015

Contributors

Univ. of Michigan:

- Amy Cohn
- Elizabeth Olin
- Billy Pozehl
- Luke Stumpos
- Yicong Zhang

Univ. of Colorado Hospital:

- Jose Melendez
- Laura Nelson
- Emily Porritt
- Greg Ryder
- Suzanne Sullivan
- Michael Torpey
- Ashley Walsh

Outline

- Motivation and Background
- Goals
- Inputs
- Decisions and Objective
- Results
- Feasibility Challenges
- Conclusions/Future Work

Motivation

Background

- Colorado Health System
- Pilot project for Orthopedics
- Numerous locations and specialties
- Providers
- Require both Operating Room (OR) and Clinic Room time
- Must satisfy numerous individualized requirements
- Current Schedule
- Pieced together over time
- Minimal "wiggle-room"
- Providers want more rooms

Goals

- Develop a mathematically-based decision support tool that efficiently schedules health care providers into operating and clinical rooms over a monthly horizon
- Enable what-if analyses for incorporating new providers, adding new rooms, addressing bottlenecks, and improving existing schedules

Inputs

- Types of rooms
- Room locations
- Room availabilities
- Provider availabilities
- Allowable daily schedules
- Provider room requirements (work packages)
- Scheduling considerations
- Continuity across weeks
- Specialty Coverages

Decisions

- Approach 1: Assign providers to rooms during each shift
$-X_{p n r h d w}$: Does physician p get n rooms of type r during shift h on day d of week w ?
- Challenge: Rules relating AM shifts and PM shifts
- Sequence: a combination of room types and how many rooms of each type that make up a single, feasible day of work
- (e.g. 2 Denver ORs in the AM and 4 Denver Clinic rooms in the PM)

Decisions

- Approach 2: Assign providers to sequences for each day of the month
$-X_{p s d w}$: Does physician p get sequence s on day d of week w ?
- Challenge: Rules relating sequences across weeks
- Weekly Template: a combination of weeks
- (e.g. $\{1,2,3,4,5\},\{1,3,5\},\{2,4,5\},\{1\},\{2\}, \ldots$)

Decisions

- Approach 3: Assign providers to sequences and weekly templates for each day of the week
$-X_{p s t t}$: Does provider p get sequence s on day d for the weeks in weekly template t ?

Alternative decision variable definitions can reduce the number and complexity of constraints

Objective Function Criteria

- Provider Considerations:
- Weekly continuity
- Required travel (daily/weekly)
- Changes to current schedule
- Number of rooms per shift
- Full-days vs. half-days
- Schedule Considerations:
- Leveling of specialty coverage
- Amount of overbooking in clinics

Objective Function

- Determining weights for metrics is challenging
- Multi-criteria objectives take longer to solve
- Non-linear relationships
- Decision makers are better at comparing schedules to one another

Using an iterative solving approach involving bounds on each metric has advantages over using weighted objective functions

Results

- Monthly schedule with reduced room overutilization is quickly generated
- Reports on room over/underutilization
- Capable of what-if analyses:
- Hiring a new providers
- Adding new rooms
- Modifying current work packages

Feasibility Challenges

- Unrealistic expectations combined with complex scheduling rules can result in infeasibilities
- Must differentiate "needs" from desires
- When needs can't be satisfied, we may not know why
- Need to make compromises in order to find an implementable schedule

Feasibility Challenges

- Example: 3 providers each "need" 4 rooms of clinic, but only 10 rooms are available
- Reduce rooms required for one provider to 2
- Reduce rooms required for two providers to 3
- Increase rooms available to 12
- Increase rooms available to 11 and reduce rooms required for one provider to 3
- 10 efficient options to choose from

Identifying sources of infeasibility is difficult

Future Work

- Develop algorithms for identifying sources of infeasibility and the potential fixes
- Identify the types of decisions that are best to "bundle" into single decisions
- Refine objective function approach of using bounds instead of weights on metrics

Thank You!

Contact info:

blemay@umich.edu

 amycohn@umich.edu

