Determining an Optimal Schedule for Pre-Mixing Chemotherapy
Drugs

Donald Richardson

Research Team

Hassan Abbas
Jérémy Castaing, PhD Candidate
Ajaay Chandrasekaran
Chhavi Chaudhry, Student
Amy Cohn, Ph.D.
Diane Drago
Marian Grace Boxer, MD
Corinne Hardecki, RN
Madalina Jiga
Pamela Martinez, Student
Carol McMahon, RN
Matthew Rouhana, Student

Nursing Student
Industrial and Operations Engineering
Computer Science Student
Industrial and Operations Engineering
Associate Director, CHEPS
Patient \& Family Advisory Board
Patient \& Family Advisory Board
Clinical Care Coordinator, Infusion
Nursing Student
Industrial and Operations Engineering
Nurse Supervisor, Infusion
Industrial and Operations Engineering

Outline

- Background
- General Patient Flow
- Define Pre-mix
- Goal
- Motivation
- Literature
- Problem Description
- Probabilities of wasting drugs

- Static Model
- Future Steps

Outline

- Background
- General Patient Flow
- Define Pre-mix
- Goal
- Motivation
- Literature
- Problem Description
- Probabilities of wasting drugs

- Static Model
- Future Steps

Infusion Overview

What is Pre-mix ?

- Anytime you mix a drug before a patient is deemed ready to receive it
- Generally you don't pre-mix drugs due to risk in wastage cost
- Consider the trade off between waste cost and reduced patient waiting time

UMCCC Current Pre-mix Policy

- Will only mix drugs during a fixed window of time before patients arrive
- 6am-8am
- Have a fixed list of drugs they are willing to mix
- Based on cost and common use

R

Goal

- Reduce patient waiting times
- Best case without pre-mix
- Patient will wait duration of mixing drug ($\sim 30-60 \mathrm{~min}$)

"This is the pre-pre-pre-waiting room, sir. You have 3 other waiting rooms to wait in before you see the doctor...if it isn't too late in the day."

Motivation

- Cancer
- Second leading cause of death in the U.S.
- ~1.6 million estimated cases in 2015
- More than half require chemotherapy treatment
- Infusion centers
- Increased outpatient demand leads to undesirable outcomes such as:
- Increased patient waiting times
- Overworked staff
- Pre-mixing does prove to have positive outcomes
- Masselink, I., Mijden, T., Litvak, N., \& Vanberkel, P. (2011). Preparation of chemotherapy drugs: Planning policy for reduced waiting times.
- Cost associated with patient wait in cancer care
- Yabroff, K. Robin, et al. "Patient time costs associated with cancer care." Journal of the National Cancer Institute 99.1 (2007): 14-23.
- Deciding when to mix Chemo drugs
- Mazier, Alexandre, Jean-Charles Billaut, and Jean-François Tournamille. "Scheduling preparation of doses for a chemotherapy service." Annals of Operations Research 178.1 (2010): 145-154.

Outline

- Background
- General Patient Flow
- Define Pre-mix
- Goal
- Motivation
- Literature
- Problem Description
- Probabilities of wasting drugs

- Static Model
- Future Steps

Key Terms

- Hang-by time: the time duration that a drug has until it must be administered to patient.
- Deferral: Patient is too ill to receive treatment
- No show: Patient missed appointment without calling in

Description of Problem (Static)

- We will also consider having a fixed window for pre-mix
- Assumptions
- All drugs will last for all patients scheduled that day (most last 12 hours)
- Only make L drugs at a time
- All drugs take 30 minutes to make

Probability of Wasting a Drug

- We first say all patients have a probability of p to defer/no show on any given day. Assume we have m_{d} patients scheduled to receive the same drug d on a given day. We want the probability of wasting each dose we decide to premix.

Probability of Wasting a Drug

- We first say all patients have a probability of p to defer/no show on any given day. Assume we have m_{d} patients scheduled to receive the same drug d on a given day. We want the probability of wasting each dose we decide to premix.
- Let $m_{d}=4$

$$
\operatorname{Prob}\left(\text { Wasting } 1^{\text {st }} \text { dose }\right)=p^{4}
$$

Probability of Wasting a Drug

- We first say all patients have a probability of p to defer/no show on any given day. Assume we have m_{d} patients scheduled to receive the same drug d on a given day. We want the probability of wasting each dose we decide to premix.
- Let $m_{d}=4$
$\operatorname{Prob}\left(\right.$ Wasting $1^{\text {st }}$ dose $)=p^{4}$
$\operatorname{Prob}\left(\right.$ Wasting $2^{\text {nd }}$ dose $)=\binom{4}{3} p^{3}(1-p)+p^{4}$

Probability of Wasting a Drug

- We first say all patients have a probability of p to defer/no show on any given day. Assume we have m_{d} patients scheduled to receive the same drug d on a given day. We want the probability of wasting each dose we decide to premix.
- Let $m_{d}=4$
$\operatorname{Prob}\left(\right.$ Wasting $1^{\text {st }}$ dose $)=p^{4}$
$\operatorname{Prob}\left(\right.$ Wasting $2^{\text {nd }}$ dose $)=\binom{4}{3} p^{3}(1-p)+p^{4}$
$\stackrel{\text { General }}{\operatorname{Prob}(\text { Wasting nth dose })}=\sum_{i=1}^{n}\binom{m_{d}}{m_{d}-i+1} p^{m_{d}-i+1}(1-p)^{i-1}$

Probability of Wasting a Drug (Cont.)

- The previous formulation considers all patients to have equal probability of deferral. However this could depend on
- age
- sex
- treatment
- type of cancer
- etc.

Probability of Wasting a Drug (Cont.)

- Let's now consider the probability of wasting a particular dose given patient i has a probability of deferral/no show p_{i}
- Let's define a new set S_{d} which is the total number of patients scheduled to receive drug d for the day. $S_{d}=\left\{1,2, \ldots, m_{d}\right\}$

Probability of Wasting a Drug (Cont.)

- Let's now consider the probability of wasting a particular dose given patient i has a probability of deferral/no show p_{i}.
- Let's define a new set S_{d} which is the total number of patients scheduled to receive drug d for the day. $S_{d}=\left\{1,2, \ldots, m_{d}\right\}$.

$$
\operatorname{Prob}\left(\text { Wasting } 1^{s t} \text { dose }\right)=\prod_{i \in S_{d}} p_{i}
$$

Probability of Wasting a Drug (Cont.)

- Let's now consider the probability of wasting a particular dose given patient i has a probability of deferral/no show p_{i}.
- Let's define a new set S_{d} which is the total number of patients scheduled to receive drug d for the day. $S_{d}=\left\{1,2, \ldots, m_{d}\right\}$.
$\operatorname{Prob}\left(\right.$ Wasting $1^{s t}$ dose $)=\prod_{i \in S_{d}} p_{i}$
$\operatorname{Prob}\left(\right.$ Wasting $2^{\text {nd }}$ dose $)=\sum_{i \in S_{d}}\left[\left(1-p_{i}\right) \prod_{j \in S_{d} \backslash i}\left(p_{j}\right)\right]+\prod_{i \in S_{d}} p_{i}$

Probability of Wasting a Drug (Cont.)

- Let's now consider the probability of wasting a particular dose given patient i has a probability of deferral/no show p_{i}.
- Let's define a new set S_{d} which is the total number of patients scheduled to receive drug d for the day. $S_{d}=\left\{1,2, \ldots, m_{d}\right\}$.
$\operatorname{Prob}\left(\right.$ Wasting $1^{s t}$ dose $)=\prod_{i \in S_{d}} p_{i}$
$\operatorname{Prob}\left(\right.$ Wasting $2^{\text {nd }}$ dose $)=\sum_{i \in S_{d}}\left[\left(1-p_{i}\right) \prod_{j \in S_{d} \backslash i}\left(p_{j}\right)\right]+\prod_{i \in S_{d}} p_{i}$
$\operatorname{Prob}\left(\right.$ Wasting $3^{r d}$ dose $)=\sum_{i \in S_{d}} \sum_{j \in S_{d} \backslash i}\left[\left(1-p_{i}\right)\left(1-p_{j}\right) \prod_{k \in S_{d} \backslash\{i, j\}} p_{k}\right]+\sum_{i \in S_{d}}\left[\left(1-p_{i}\right) \prod_{j \in S_{d} \backslash i}\left(p_{j}\right)\right]+\prod_{i \in S_{d}} p_{i}$

Probability of Wasting a Drug (Cont.)

- Currently receiving/analyzing data to determine how to best categorize patients
- Current model will only vary the probability of deferral by drug, not by patient type

Model Description

Sets

- D: set of drugs d (e.g. 50 mg of Taxotere)
- T : set of time units (each being 30 min)

Variables

$$
\begin{aligned}
& x_{n t}^{d}= \begin{cases}1 & \text { if we mix the nth dose of drug } d \text { at time } t \\
0 & \text { o.w. }\end{cases} \\
& y_{n}^{d}= \begin{cases}1 & \text { if we don't mix the nth dose of drug } d \\
0 & \text { o.w. }\end{cases}
\end{aligned}
$$

Objective

- We first define our Expected Waste cost of a drug with the following:

$$
E_{n}^{d}[\text { waste cost }]=\sum_{w=1}^{n} c_{d} P_{d}(w)
$$

- Then we maximize the difference between Projected Savings and Expected Waste

$$
\operatorname{maximize} \sum_{d} \sum_{n} \sum_{t}\left(\Delta_{d}-E_{n}^{d}[\text { waste cost }]\right) * x_{n t}^{d}
$$

Parameters

- Δ_{d} : the reward/savings for mixing drug d
- T : the total time units for the premix period
- c_{d} : the cost of drug d
- $n[d]$: the number of doses needed for each drug based on the scheduled patients
- M : very large number

Constraints

$\sum_{t} x_{n t}^{d}+y_{n}^{d}=1$
$\forall d, n$
Relate our auxiliary variable to the decision variable

Parameters

- Δ_{d} : the reward/savings for mixing drug d
- T : the total time units for the premix period
- c_{d} : the cost of drug d
- $n[d]$: the number of doses needed for each drug based on the scheduled patients
- M : very large number

Constraints

$\sum_{t} x_{n t}^{d}+y_{n}^{d}=1$

$$
\begin{equation*}
y_{n}^{d} \leq y_{n+1}^{d} \tag{2}
\end{equation*}
$$

$$
\forall d, n=1 . . n[d]-1
$$

Must make the first dose before making $2^{\text {nd }}, 3^{\text {rd }}, \ldots$

Parameters

- Δ_{d} : the reward/savings for mixing drug d
- T : the total time units for the premix period
- c_{d} : the cost of drug d
- $n[d]$: the number of doses needed for each drug based on the scheduled patients
- M : very large number

Constraints

$\sum_{t} x_{n t}^{d}+y_{n}^{d}=1$

$$
\forall d, n
$$

$$
\begin{gather*}
y_{n}^{d} \leq y_{n+1}^{d} \tag{2}\\
\sum_{t} t x_{n t}^{d} \leq \sum_{t} t x_{n+1 t}^{d}+M * y_{n+1} \tag{3}\\
\text { ose ordering }
\end{gather*}
$$

$$
\forall d, n=1 . . n[d]-1
$$

$$
\forall n, d
$$

Parameters

- Δ_{d} : the reward/savings for mixing drug d
- T : the total time units for the premix period
- c_{d} : the cost of drug d
- $n[d]$: the number of doses needed for each drug based on the scheduled patients
- M : very large number

Constraints

$\sum^{2}+x_{x}=1$

$$
y_{n}^{d} \leq y_{n+1}^{d}
$$

$\sum_{t} t x_{n t}^{d} \leq \sum_{t} t x_{n+1 t}^{d}+M * y_{n+1}$
$\sum_{d} \sum_{n} x_{n t}^{d} \leq L$
Only make L at a time

Parameters

- Δ_{d} : the reward/savings for mixing drug d
- T : the total time units for the premix period
- c_{d} : the cost of drug d
- $n[d]$: the number of doses needed for each drug based on the scheduled patients
- M : very large number

Constraints

$\sum_{t}^{x_{i} x_{i}+y_{i}^{d}=1}$

$$
\begin{equation*}
\forall d, n \tag{1}
\end{equation*}
$$

$$
\begin{align*}
y_{n}^{d} & \leq y_{n+1}^{d} \tag{2}\\
\sum_{t} t x_{n t}^{d} & \leq \sum_{t} t x_{n+1 t}^{d}+M * y_{n+1} \tag{3}
\end{align*}
$$

$$
\forall d, n=1 . . n[d]-1
$$

$$
\forall n, d
$$

$$
\begin{equation*}
\sum \sum_{i}^{2} \leq t \leq 1 \tag{4}
\end{equation*}
$$

$$
\forall t
$$

$$
\begin{equation*}
\sum_{t} x_{n t}^{d} \leq 1 \tag{5}
\end{equation*}
$$

$$
\forall n, d
$$

Can $\stackrel{t}{\text { only }}$ make the nth dose of a drug once Parameters

- Δ_{d} : the reward/savings for mixing drug d
- T : the total time units for the premix period
- c_{d} : the cost of drug d
- $n[d]$: the number of doses needed for each drug based on the scheduled patients
- M : very large number

Example

- Suppose we have patients scheduled to receive 15 different drugs.
- Each takes 30 min to make

Drug	Hang by	Price	Currently pre-mixed	Treatment for
Carboplatin	12 hrs	2.52	Yes	Cancer of the ovaries, head, and neck
Paclitaxel	12 hrs	4.10	Yes	Cancer in the lungs, ovary, or breast
Cyclophosphamide	12 hrs	879.00	Yes	Leukemia and lymphomas, and nephrotic syndrome
Folotyn	12 hrs	4637.21	No	T-cell lymphoma
Adcetris	12 hrs	6516.00	No	Treats Hodgkin's lymphoma and systemic anaplastic large cell lymphoma

Example Scenarios

	Scenario 1
Reward	1 for all drugs
\# of Doses	2 for each drug
$\mathrm{P}_{\mathrm{d}}(\mathrm{n})$	$\mathrm{p}=.25$ for all drugs

Example Scenarios

Reward	1 for all drugs	11.67 for all drugs
\# of Doses	2 for each drug	2 for each drug
$\mathrm{P}_{\mathrm{d}}(\mathrm{n})$	$\mathrm{p}=.25$ for all drugs	$\mathrm{p}=.25$ for all drugs

Example Scenarios

Scenario 3			
Reward	1 for all drugs	11.67 for all drugs	11.67 for all drugs
\# of Doses	2 for each drug	2 for each drug	2 for each drug
$\mathrm{P}_{\mathrm{d}}(\mathrm{n})$	$\begin{aligned} & \mathrm{p}=.25 \text { for } \\ & \text { all drugs } \end{aligned}$	$\begin{aligned} & \mathrm{p}=.25 \text { for } \\ & \text { all drugs } \end{aligned}$	inverse to cost of drug ranging from . 02 to . 30

Example Scenarios

Scenario 4

Reward	1 for all drugs	11.67 for all drugs	11.67 for all drugs	11.67 for all drugs
\# of Doses	2 for each drug	2 for each drug	2 for each drug	1-2 lower cost 3-5 higher cost
$\mathrm{P}_{\mathrm{d}}(\mathrm{n})$	$\begin{aligned} & \mathrm{p}=.25 \text { for } \\ & \text { all drugs } \end{aligned}$	$\mathrm{p}=.25 \text { for }$ all drugs	inverse to cost of drug ranging from . 02 to . 30	$\begin{gathered} \mathrm{p}=.25 \text { for all } \\ \text { drugs } \end{gathered}$

Example Scenarios

Scenario 5

Reward	1 for all drugs	11.67 for all drugs	11.67 for all drugs	$\begin{aligned} & 11.67 \text { for all } \\ & \text { drugs } \end{aligned}$	11.67 for all drugs
$\begin{gathered} \# \text { of } \\ \text { Doses } \end{gathered}$	2 for each drug	2 for each drug	2 for each drug	1-2 lower cost 3-5 higher cost	1-2 lower cost $3-5$ higher cost
$\mathrm{P}_{\mathrm{d}}(\mathrm{n})$	$\begin{aligned} & \mathrm{p}=.25 \text { for } \\ & \text { all drugs } \end{aligned}$	$\begin{aligned} & \mathrm{p}=.25 \text { for } \\ & \text { all drugs } \end{aligned}$	inverse to cost of drug ranging from . 02 to . 30	$\begin{gathered} \mathrm{p}=.25 \text { for all } \\ \text { drugs } \end{gathered}$	inverse to cost of drug ranging from .02 to .30

Results

Drugs	Cost
A	$\$ 1.61$
B	$\$ 2.52$
C	$\$ 4.10$
D	$\$ 6.80$
E	$\$ 16.56$
F	$\$ 83.40$
G	$\$ 91.54$
H	$\$ 155.56$
I	$\$ 367.02$
J	$\$ 698.60$
K	$\$ 879.00$
L	$\$ 1,158.84$
M	$\$ 2,389.39$
N	$\$ 4,637.21$
O	$\$ 6,516.00$
TOTAL	-

Results

Drugs	Cost	Scen. 1
A	$\$ 1.61$	2
B	$\$ 2.52$	1
C	$\$ 4.10$	1
D	$\$ 6.80$	1
E	$\$ 16.56$	-
F	$\$ 83.40$	-
G	$\$ 91.54$	-
H	$\$ 155.56$	-
I	$\$ 367.02$	-
J	$\$ 698.60$	-
K	$\$ 879.00$	-
L	$\$ 1,158.84$	-
M	$\$ 2,389.39$	-
N	$\$ 4,637.21$	-
O	$\$ 6,516.00$	-
TOTAL	-	5

Results

Drugs	Cost	Scen. 1	Scen. 2
A	$\$ 1.61$	2	2
B	$\$ 2.52$	1	2
C	$\$ 4.10$	1	2
D	$\$ 6.80$	1	1
E	$\$ 16.56$	-	1
F	$\$ 83.40$	-	-
G	$\$ 91.54$	-	-
H	$\$ 155.56$	-	-
I	$\$ 367.02$	-	-
J	$\$ 698.60$	-	-
K	$\$ 879.00$	-	-
L	$\$ 1,158.84$	-	-
M	$\$ 2,389.39$	-	-
N	$\$ 4,637.21$	-	-
O	$\$ 6,516.00$	-	-
TOTAL	-	5	8

Results

Drugs	Cost	Scen. 1	Scen. 2	Scen. 3
A	$\$ 1.61$	2	2	2
B	$\$ 2.52$	1	2	2
C	$\$ 4.10$	1	2	2
D	$\$ 6.80$	1	1	1
E	$\$ 16.56$	-	1	1
F	$\$ 83.40$	-	-	-
G	$\$ 91.54$	-	-	-
H	$\$ 155.56$	-	-	-
I	$\$ 367.02$	-	-	-
J	$\$ 698.60$	-	-	-
K	$\$ 879.00$	-	-	-
L	$\$ 1,158.84$	-	-	-
M	$\$ 2,389.39$	-	-	-
N	$\$ 4,637.21$	-	-	-
O	$\$ 6,516.00$	-	-	-
TOTAL	-	5	8	8

Results

Drugs Cost Scen. $1 \quad$ Scen. $2 \quad$ Scen. $3 \quad$ Scen. 4

A	$\$ 1.61$	2	2	2	2
B	$\$ 2.52$	1	2	2	2
C	$\$ 4.10$	1	2	2	1
D	$\$ 6.80$	1	1	1	1
E	$\$ 16.56$	-	1	1	1
F	$\$ 83.40$	-	-	-	-
G	$\$ 91.54$	-	-	-	-
H	$\$ 155.56$	-	-	-	-
I	$\$ 367.02$	-	-	-	-
J	$\$ 698.60$	-	-	-	-
K	$\$ 879.00$	-	-	-	1
L	$\$ 1,158.84$	-	-	-	-
M	$\$ 2,389.39$	-	-	-	-
N	$\$ 4,637.21$	-	-	-	-
O	$\$ 6,516.00$	-	-	-	-
TOTAL	-	5	8	8	8

Results

Drugs Cost Scen. $1 \quad$ Scen. $2 \quad$ Scen. $3 \quad$ Scen. $4 \quad$ Scen. 5

A	$\$ 1.61$	2	2	2	2	-
B	$\$ 2.52$	1	2	2	2	1
C	$\$ 4.10$	1	2	2	1	-
D	$\$ 6.80$	1	1	1	1	1
E	$\$ 16.56$	-	1	1	1	-
F	$\$ 83.40$	-	-	-	-	-
G	$\$ 91.54$	-	-	-	-	-
H	$\$ 155.56$	-	-	-	-	-
I	$\$ 367.02$	-	-	-	-	-
J	$\$ 698.60$	-	-	-	-	1
K	$\$ 879.00$	-	-	-	1	2
L	$\$ 1,158.84$	-	-	-	-	1
M	$\$ 2,389.39$	-	-	-	-	-
N	$\$ 4,637.21$	-	-	-	-	-
O	$\$ 6,516.00$	-	-	-	-	2
TOTAL	-	5	8	8	8	8

Results

Drugs Cost Scen. $1 \quad$ Scen. $2 \quad$ Scen. $3 \quad$ Scen. $4 \quad$ Scen. 5

A	$\$ 1.61$	2	2	2	2	-
B	$\$ 2.52$	1	2	2	2	1
C	$\$ 4.10$	1	2	2	1	-
D	$\$ 6.80$	1	1	1	1	1
E	$\$ 16.56$	-	1	1	1	-
F	$\$ 83.40$	-	-	-	-	-
G	$\$ 91.54$	-	-	-	-	-
H	$\$ 155.56$	-	-	-	-	-
I	$\$ 367.02$	-	-	-	-	-
J	$\$ 698.60$	-	-	-	-	1
K	$\$ 879.00$	-	-	-	1	2
L	$\$ 1,158.84$	-	-	-	-	1
M	$\$ 2,389.39$	-	-	-	-	-
N	$\$ 4,637.21$	-	-	-	-	-
O	$\$ 6,516.00$	-	-	-	-	2
TOTAL	-	5	8	8	8	8

Outline

- Background
- General Patient Flow
- Define Pre-mix
- Goal
- Motivation
- Literature
- Problem Description
- Probabilities of wasting drugs
- Static Model
- Future Steps

Next Steps

- Static Model
- Consider
- Hang-by time for various drugs
- Preparation time for various drugs
- Continue working with data collection to run logistical regression
- How to categorize various types of patients
- Dynamic Model
- Goal: To find an optimal drug-mixing schedule throughout the day and update as we observe patient deferrals

Thank You!

Contacts

Donald Richardson

 donalric@umich.edu
CHEPS

http://cheps.engin.umich.edu

Appendix

- States - 3-dimensional
- t: Time of day we are making the decision
- O: List of orders for patients scheduled that day
- S: Inventory of premixed drugs
- Actions
- Mix a certain drug or not mix at $A=\{o \in O, \emptyset\}$
- Stages
- [0,T] in 15 min intervals
- Rewards
- Expected reward of mixing drug o at time t

Appendix

Replace with updated version
$v(t, O, S)=\max _{o \in O}\left\{R(o, t)+p(o) v\left(t^{\prime}, O \backslash o, S \cup\{o\}\right)+(1-p(o)) v\left(t^{\prime}, O \backslash o, S\right)\right\}$
where:
$p(o)$ is the probability of deferral of patient receiving order o
$R(o, t)$ is the expected reward of preparing order o at time t $v\left(t^{\prime}, O^{\prime}, S^{\prime}\right)$ is the expected reward after we prepared order o.

Appendix

- For $|\mathrm{O}|$ moderately low
- Use backward induction
- For $|\mathrm{O}|$ otherwise
- State space blows up!
- Approximate Dynamic programming

Infusion Overview

Scenario 1
Objective Value $=3.36$
E [Waste] $=1.64$

Scenario 3
Objective Value $=87.7$
$\mathrm{E}[$ Waste $]=5.70$

Scenario 3
Objective Value $=87.82$
$\mathrm{E}[$ Waste $]=5.575$

Scenario 4
Objective Value $=88.74$
$\mathrm{E}[$ Waste $]=4.66025$

Scenario 5
Objective Value $=92.23$
$\mathrm{E}[$ Waste $]=1.17$

