Coordination of Surgical Blocks and Ambulatory Clinics at a Large Teaching Hospital

Brian Lemay
University of Michigan
5-31-2015

Advisor: Prof Amy Cohn
Contributors

Univ. of Michigan:
• Amy Cohn
• Elizabeth Olin
• Billy Pozehl
• Luke Stumpos
• Yicong Zhang

Univ. of Colorado Hospital:
• Jose Melendez
• Laura Nelson
• Emily Porritt
• Greg Ryder
• Suzanne Sullivan
• Michael Torpey
• Ashley Walsh
Outline

• Motivation and Background
• Goals
• Inputs
• Decisions and Objective
• Initial Results
• Feasibility Challenges
• Conclusions/Future Work
Motivation
Background

• Colorado Health System
 – Piloting project for Orthopedics
 – Numerous locations and specialties

• Providers
 – Require both Operating Room (OR) and Clinic Room time
 – Must satisfy numerous individualized requirements

• Current Schedule
 – Pieced together over time
 – Minimal “wiggle-room”
 – Providers want more rooms
Goals

• Develop a **mathematically-based decision support tool** that **efficiently schedules** health care providers into **operating and clinical rooms** over a monthly horizon.

• **Enable what-if analyses** for incorporating new providers, adding new rooms, addressing bottlenecks, and improving existing schedules.
Inputs

• Types of rooms
• Room locations
• Room availabilities
• Provider availabilities
• Allowable daily schedules
• Provider room requirements (work packages)
• Scheduling considerations
 – Continuity across weeks
 – Specialty Coverages
Decisions

• **Approach 1:** Assign providers to rooms during each shift

 – X_{pnrhdw}: Does physician p get n rooms of type r during shift h on day d of week w?

 – **Challenge:** Rules relating AM shifts and PM shifts

• **Sequence:** a combination of room types and how many rooms of each type that make up a single, feasible day of work

 – (e.g. 2 Denver ORs in the AM and 4 Denver Clinic rooms in the PM)
• **Approach 2:** Assign providers to sequences for each day of the month
 – X_{psdw}: Does physician p get sequence s on day d of week w?
 – **Challenge:** Rules relating sequences across weeks

• **Weekly Template:** a combination of weeks
 – (e.g. $\{1,2,3,4,5\}$, $\{1,3,5\}$, $\{2,4,5\}$, $\{1\}$, $\{2\}$, ...)

Decisions
• **Approach 3:** Assign providers to sequences and weekly templates for each day of the week

 – X_{psdt}: Does provider p get sequence s on day d for the weeks in weekly template t?

Alternative decision variable definitions can reduce the number and complexity of constraints
Objective Function Criteria

• **Provider Considerations:**
 – Weekly continuity
 – Required travel (daily/weekly)
 – Changes to current schedule
 – Number of rooms per shift
 – Full-days vs. half-days

• **Schedule Considerations:**
 – Leveling of specialty coverage
 – Amount of overbooking in clinics
Objective Function

- Determining weights for metrics is challenging
- Multi-criteria objectives take longer to solve
- Non-linear relationships
- Decision makers are better at comparing schedules to one another

Using an iterative solving approach involving bounds on each metric has advantages over using weighted objective functions
Initial Results

• Monthly schedule with reduced room overutilization is quickly generated

• Report is generated on room utilization which enables identification of room over/underutilization

• Capable of what-if analyses:
 – Hiring a new providers
 – Adding new rooms
 – Modifying current work packages
Feasibility Challenges

- Unrealistic expectations combined with complex scheduling rules can result in infeasibilities
- Must differentiate “needs” from desires
- When needs can’t be satisfied, we may not know why
- Need to make compromises in order to find an implementable schedule
Feasibility Challenges

• Example: 3 providers each “need” 4 rooms of clinic, but only 10 rooms are available
 – Reduce rooms required for one provider to 2
 – Reduce rooms required for two providers to 3
 – Increase rooms available to 12
 – Increase rooms available to 11 and reduce rooms required for one provider to 3

• 10 efficient options to choose from

Identifying sources of infeasibility is difficult
Future Work

• Develop algorithms for identifying sources of infeasibility and the potential fixes

• Identify the types of decisions that are best to “bundle” into single decisions

• Refine objective function approach of using bounds instead of weights on metrics
Thank You!

Contact info:

blemay@umich.edu
amycohn@umich.edu