Optimally Scheduling Satellite Communications

Brian Lemay

University of Michigan 06-01-2015

Co-authors: Prof Amy Cohn, Prof James Cutler, Jeremy Castaing, Robert Zideck

Motivations

<u>QB50 Mission</u> <u>Expected to Launch</u> <u>in 2016</u>

1 - 50 kg Satellite Launches [1]			
Year:	Approx. Launches Per Year:		
2006-2012	25		
2013	92		
2014	140		

<u>Ground station</u> <u>antennas</u>

Goal and Outline

 Schedule downloads for a multi-satellite, multiground station system.

Orbits and Ground Stations

Satellite ground tracks

The Multi-Satellite, Multi-Ground Station Scheduling Problem (MMSP)

- Objective: to maximize the total amount of data downloaded over the planning horizon
- Subject to:
 - Download opportunities
 - Conflicts
 - Energy & Data Dynamics
 - Ground Stations Characteristics:
 - Download Rate (bits/sec)
 - Download Cost (joules/bit)
 - Efficiency (percentage of download actually received)

Download Decisions

• x_{sig} – Percentage of interval *i* that satellite *s* downloads to ground station *g*

• q_{sig} – Amount of data downloaded from satellite s during interval i to ground station g

A Simple Schedule

	Ground Station 1			
	Interval 1		Interval 2	
	X	q	X	q
Satellite 1	40%	2 Mb	0%	0 Mb
Satellite 2	60%	3 Mb	30%	1 Mb

Energy and Data Dynamics

$$e_{(i+1)} = \min\{e_{max}, e_i + \delta_i^{e+} - \delta_i^{e-} - \sum_{g} \alpha_{ig} q_{ig}\}$$

Energy available is based on previous energy + energy gained - energy spent unrelated
$$a_{(i+1)}=\min\{0\}$$
 and $a_{i+1}=\min\{0\}$

Data available is based on previous data + data gained - data lost - data successfully downloaded

Parameters:

 δ_i^{e+} : net amount of energy acquired (joules)

 δ_i^{e-} : net amount of energy acquired (joules)

 δ_i^{d+} : net amount of data acquired (bits)

 δ_i^{d} : net amount of data acquired (bits)

 α_{ig} : Download cost (joules/bit)

 η_{ig} : Download efficiency (% received)

<u>Variables:</u>

q_{ig}: Amount of data downloaded (bits)

e_i: Energy available (joules)

d_i: Data available (bits)

What do we want to look at?

 Tractability: Can it solve real-world problems in a reasonable amount of time?

 Quality: How much value does it add over a simpler, more traditional scheduling approach?

 Applications: How can it be used as a mechanism for conducting analysis on a mission?

Generating Data for Testing

- Generated orbital information for each of the 50 satellites for the QB 50 mission
 - Determine which ground stations are in view
 - Determine when in view of the Sun
- Ground stations are located at each participating university and are randomly categorized as good, average, or poor

Solve Times

(50 Satellites, 50 Ground Stations)

MMSP model can be solved quickly for realistic planning horizons

Comparison Method

Greedy Heuristic

- For each time interval:
 - Identify maximum possible download for each satellite
 - Schedule the maximum download
 - Eliminate the participating satellite and ground station from the list of potential downloads
 - Repeat until no more feasible downloads

Value of Optimization

Energy Gair (joules/sec	•	Greedy Total Download (MB)	Improvement Over Greedy
0.05	104.97	104.91	0.1%

- 1. Satellites can collect less energy
- 2. Optimization provides significant value when they do

Value of Optimization

Data Gain	Improvement Over Greedy
Base Case (0.3 Mb/Day)	0.2%
x5	0.2%
x10	0.2%
x15	4.5%
x20	32.8%
x25	61.0%
x30	61.0%
x35	61.0%

Optimization provides significant value when satellites collect more data than what is currently planned

Analysis of Deployment Options

Analysis of Deployment Options

Week Number

Total Download (MB)

Improvement (%)

1-minute	5-minutes	10-minutes
126.7	141.3	151.8
-	11.5%	19.8%

10-minute spacing enables more data to be downloaded

Conclusions and Future Work

- Capable of quickly solving real problems with clear benefits over more traditional methods
 - Enabled sensitivity analysis for evaluating system capabilities and bottlenecks
- MMSP adds the most value in scenarios where energy is a limiting resource
- Future Work: Stochastic instances, prioritized downloads, fairness of downloads

Thank You!

Contact info:

Brian Lemay: <u>blemay@umich.edu</u>

Amy Cohn: amycohn@umich.edu

James Cutler: jcutler@umich.edu

Jeremy Castaing: jctg@umich.edu

Robert Zideck: robzidek@umich.edu

We gratefully acknowledge the financial support of: **National Science Foundation** (CNS-1035236) **Air Force Research Laboratory** (FA9550-12-1-0401)

$$\max \sum_{s \in S} \sum_{i \in I} \sum_{g \in G} \eta_{ig} q_{sig}$$

Objective: Maximize total download over the planning horizon

Parameters:

 $\gamma_{\text{sig}}\text{:}$ Indicator if in view during i

 η_{ig} : Download efficiency (% received)

t_i: Duration of interval (sec)

 ϕ_{ig} : Download rate (bits/sec)

 α_{ig} : Download cost (joules/bit)

 δ_{si}^{e} : net amount of energy acquired (joules)

 δ_{si}^{d} : net amount of data acquired (bits)

Variables:

 x_{sig} : Percent of interval used for download

q_{sig}: Amount of data downloaded (bits)

e_{si}: Energy available (joules)

d_{si}: Data available (bits)

h_{si}e: excess energy spilled

$$\max \sum_{s \in S} \sum_{i \in I} \sum_{g \in G} \eta_{ig} q_{sig}$$

$$x_{sig} \leq \gamma_{sig} \qquad \forall s \in S, i \in I, g \in G \qquad (1)$$

Can only download if satellite is in range of ground station

Parameters:

 $\gamma_{\text{sig}}\text{:}$ Indicator if in view during i

 η_{ig} : Download efficiency (% received)

t_i: Duration of interval (sec)

 ϕ_{ig} : Download rate (bits/sec)

 α_{ig} : Download cost (joules/bit)

 δ_{si}^{e} : net amount of energy acquired (joules)

 δ_{si}^{d} : net amount of data acquired (bits)

Variables:

x_{sig}: Percent of interval used for download

q_{sig}: Amount of data downloaded (bits)

e_{si}: Energy available (joules)

d_{si}: Data available (bits)

h_{si}e: excess energy spilled

$$\max \sum_{s \in S} \sum_{i \in I} \sum_{g \in G} \eta_{ig} q_{sig}$$

$$x_{sig} \leq \gamma_{sig} \qquad \forall s \in S, i \in I, g \in G \qquad (1)$$

$$\sum_{s \in S} x_{sig} \leq 1 \qquad \forall i \in I, g \in G \qquad (2)$$

Ground stations cannot receive data for more than 100% of each interval

Parameters:

 $\gamma_{\text{sig}}\text{:}$ Indicator if in view during i

 η_{ig} : Download efficiency (% received)

t_i: Duration of interval (sec)

 ϕ_{ig} : Download rate (bits/sec)

 α_{ig} : Download cost (joules/bit)

 δ_{si}^{e} : net amount of energy acquired (joules)

 δ_{si}^{d} : net amount of data acquired (bits)

Variables:

x_{sig}: Percent of interval used for download

q_{sig}: Amount of data downloaded (bits)

e_{si}: Energy available (joules)

d_{si}: Data available (bits)

h_{si}e: excess energy spilled

$$\max \sum_{s \in S} \sum_{i \in I} \sum_{g \in G} \eta_{ig} q_{sig}$$

$$x_{sig} \leq \gamma_{sig} \qquad \forall s \in S, i \in I, g \in G \qquad (1)$$

$$\sum_{s \in S} x_{sig} \leq 1 \qquad \forall i \in I, g \in G \qquad (2)$$

$$\sum_{s \in C} x_{sig} \leq 1 \qquad \forall s \in S, i \in I \qquad (3)$$

Satellites cannot transmit data for more than 100% of each interval

Parameters:

 γ_{sig} : Indicator if in view during i

 η_{ig} : Download efficiency (% received)

t_i: Duration of interval (sec)

 ϕ_{ig} : Download rate (bits/sec)

 α_{ig} : Download cost (joules/bit)

 δ_{si}^{e} : net amount of energy acquired (joules)

 δ_{si}^{d} : net amount of data acquired (bits)

Variables:

x_{sig}: Percent of interval used for download

q_{sig}: Amount of data downloaded (bits)

e_{si}: Energy available (joules)

d_{si}: Data available (bits)

h_{si}e: excess energy spilled

$$\max \sum_{s \in S} \sum_{i \in I} \sum_{g \in G} \eta_{ig} q_{sig}$$

$$x_{sig} \leq \gamma_{sig} \qquad \forall s \in S, i \in I, g \in G \qquad (1)$$

$$\sum_{s \in S} x_{sig} \leq 1 \qquad \forall i \in I, g \in G \qquad (2)$$

$$\sum_{s \in S} x_{sig} \le 1 \qquad \forall i \in I, g \in G \qquad (2)$$

$$\sum_{g \in G} x_{sig} \le 1 \qquad \forall s \in S, i \in I \qquad (3)$$

$$q_{sig} \le t_i \phi_{ig} x_{sig}$$
 $\forall s \in S, i \in I, g \in G$ (4)

Download amount is limited by length of interval and download rate

Parameters:

 γ_{sig} : Indicator if in view during i

 η_{ig} : Download efficiency (% received)

t_i: Duration of interval (sec)

 ϕ_{ig} : Download rate (bits/sec)

 α_{ig} : Download cost (joules/bit)

 δ_{si}^{e} : net amount of energy acquired (joules)

 δ_{si}^{d} : net amount of data acquired (bits)

Variables:

x_{sig}: Percent of interval used for download

q_{sig}: Amount of data downloaded (bits)

e_{si}: Energy available (joules)

d_{si}: Data available (bits)

h_{si}e: excess energy spilled

$$\max \sum_{s \in S} \sum_{i \in I} \sum_{g \in G} \eta_{ig} q_{sig}$$

$$x_{sig} \le \gamma_{sig} \qquad \forall s \in S, i \in I, g \in G \qquad (1)$$

$$\sum_{s \in S} x_{sig} \le 1 \qquad \forall i \in I, g \in G \qquad (2)$$

$$\sum_{g \in G} x_{sig} \le 1 \qquad \forall s \in S, i \in I \tag{3}$$

$$q_{sig} \le t_i \phi_{ig} x_{sig}$$
 $\forall s \in S, i \in I, g \in G$ (4)

$$e_{s0} = e_{start} \qquad \forall s \in S \tag{5}$$

Initial energy available

Parameters:

 $\gamma_{\text{sig}}\text{:}$ Indicator if in view during i

 η_{ig} : Download efficiency (% received)

t_i: Duration of interval (sec)

 ϕ_{ig} : Download rate (bits/sec)

 α_{ig} : Download cost (joules/bit)

 δ_{si}^{e} : net amount of energy acquired (joules)

 δ_{si}^{d} : net amount of data acquired (bits)

Variables:

 x_{sig} : Percent of interval used for download

q_{sig}: Amount of data downloaded (bits)

e_{si}: Energy available (joules)

d_{si}: Data available (bits)

h_{si}e: excess energy spilled

$$\max \sum_{s \in S} \sum_{i \in I} \sum_{g \in G} \eta_{ig} q_{sig}$$

$$x_{sig} \leq \gamma_{sig} \qquad \forall s \in S, i \in I, g \in G \qquad (1)$$

$$\sum_{s \in S} x_{sig} \leq 1 \qquad \forall i \in I, g \in G \qquad (2)$$

$$\sum_{g \in G} x_{sig} \leq 1 \qquad \forall s \in S, i \in I \qquad (3)$$

$$q_{sig} \leq t_i \phi_{ig} x_{sig} \qquad \forall s \in S, i \in I, g \in G \qquad (4)$$

 $q_{sig} \leq t_i \phi_{ig} x_{sig}$

 $\forall s \in S$ $e_{s0} = e_{start}$

 $\forall s \in S, i \in I$ $e_{min} \le e_{si} \le e_{max}$

Energy buffer size: lower and upper bound on stored energy

Parameters:

 $\gamma_{\text{sig}}\text{:}$ Indicator if in view during i

η_{ig}: Download efficiency (% received)

t_i: Duration of interval (sec)

 ϕ_{ig} : Download rate (bits/sec)

 α_{ig} : Download cost (joules/bit)

 δ_{si}^{e} : net amount of energy acquired (joules)

 δ_{si}^{d} : net amount of data acquired (bits)

Variables:

x_{sig}: Percent of interval used for download

q_{sig}: Amount of data downloaded (bits)

e_{si}: Energy available (joules)

d_{si}: Data available (bits)

h_{si}e: excess energy spilled

$$\max \sum_{s \in S} \sum_{i \in I} \sum_{g \in G} \eta_{ig} q_{sig}$$

$$s \in S \ i \in I \ g \in G$$

$$x_{sig} \leq \gamma_{sig} \qquad \forall s \in S, \ i \in I, \ g \in G \qquad (1)$$

$$\sum_{s \in S} x_{sig} \leq 1 \qquad \forall i \in I, \ g \in G \qquad (2)$$

$$\sum_{g \in G} x_{sig} \leq 1 \qquad \forall s \in S, \ i \in I \qquad (3)$$

$$q_{sig} \leq t_i \phi_{ig} x_{sig} \qquad \forall s \in S, \ i \in I, \ g \in G \qquad (4)$$

$$e_{s0} = e_{start} \qquad \forall s \in S \qquad (5)$$

$$e_{min} \leq e_{si} \leq e_{max} \qquad \forall s \in S, \ i \in I \qquad (6)$$

$$e_{s,i+1} = e_{si} + \delta_{si}^{e} \qquad (7)$$

Energy available is based on previous energy + energy gained - energy used - any excess energy that must be spilled

Parameters:

 $\gamma_{\text{sig}}\text{:}$ Indicator if in view during i

 η_{ig} : Download efficiency (% received)

t_i: Duration of interval (sec)

 ϕ_{ig} : Download rate (bits/sec)

 α_{ig} : Download cost (joules/bit)

 δ_{si}^{e} : net amount of energy acquired (joules)

 δ_{si}^{d} : net amount of data acquired (bits)

Variables:

 x_{sig} : Percent of interval used for download

q_{sig}: Amount of data downloaded (bits)

e_{si}: Energy available (joules)

d_{si}: Data available (bits)

h_{si}e: excess energy spilled

$$\max \sum_{s \in S} \sum_{i \in I} \sum_{g \in G} \eta_{ig} q_{sig}$$

$$x_{sig} \le \gamma_{sig}$$
 $\forall s \in S, i \in I, g \in G$ (1)
 $\sum_{s \in S} x_{sig} \le 1$ $\forall i \in I, g \in G$ (2)

$$\sum_{g \in G} x_{sig} \le 1 \qquad \forall s \in S, i \in I \tag{3}$$

$$q_{sig} \le t_i \phi_{ig} x_{sig}$$
 $\forall s \in S, i \in I, g \in G$ (4)

$$e_{s0} = e_{start} \qquad \forall s \in S \tag{5}$$

$$e_{min} \le e_{si} \le e_{max} \qquad \forall s \in S, i \in I$$
 (6)

$$e_{s,i+1} = e_{si} + \delta_{si}^e - \sum_{g \in G} \alpha_{ig} q_{sig} - h_{si}^e \quad \forall s \in S, i \in I$$
 (7)

$$d_{s0} = d_{start} \qquad \forall s \in S \tag{8}$$

Initial data available

Parameters:

 γ_{sig} : Indicator if in view during i

η_{ig}: Download efficiency (% received)

t_i: Duration of interval (sec)

 ϕ_{ig} : Download rate (bits/sec)

 α_{ig} : Download cost (joules/bit)

 δ_{si}^{e} : net amount of energy acquired (joules)

 δ_{si}^{d} : net amount of data acquired (bits)

Variables:

 x_{sig} : Percent of interval used for download

q_{sig}: Amount of data downloaded (bits)

e_{si}: Energy available (joules)

d_{si}: Data available (bits)

h_{si}e: excess energy spilled

$$\max \sum_{s \in S} \sum_{i \in I} \sum_{g \in G} \eta_{ig} q_{sig}$$

$$x_{sig} \le \gamma_{sig} \qquad \forall s \in S, i \in I, g \in G \qquad (1)$$

$$\sum_{s \in S} x_{sig} \le 1 \qquad \forall i \in I, g \in G \qquad (2)$$

$$\sum_{g \in G} x_{sig} \le 1 \qquad \forall s \in S, i \in I \tag{3}$$

$$q_{sig} \le t_i \phi_{ig} x_{sig}$$
 $\forall s \in S, i \in I, g \in G$ (4)

$$e_{s0} = e_{start} \qquad \forall s \in S \tag{5}$$

$$e_{min} \le e_{si} \le e_{max} \qquad \forall s \in S, i \in I$$
 (6)

$$e_{s,i+1} = e_{si} + \delta_{si}^e - \sum_{g \in G} \alpha_{ig} q_{sig} - h_{si}^e \quad \forall s \in S, i \in I$$
 (7)

$$d_{s0} = d_{start} \qquad \forall s \in S \tag{8}$$

$$0 \le d_{si} \le d_{max} \qquad \forall s \in S, i \in I \tag{9}$$

Data buffer size: lower and upper bound on stored energy

Parameters:

 γ_{sig} : Indicator if in view during i

 η_{ig} : Download efficiency (% received)

t_i: Duration of interval (sec)

 ϕ_{ig} : Download rate (bits/sec)

 α_{ig} : Download cost (joules/bit)

 $\delta_{si}{}^{e} :$ net amount of energy acquired (joules)

 δ_{si}^{d} : net amount of data acquired (bits)

Variables:

 x_{sig} : Percent of interval used for download

q_{sig}: Amount of data downloaded (bits)

e_{si}: Energy available (joules)

d_{si}: Data available (bits)

h_{si}e: excess energy spilled

$$\max \sum_{s \in S} \sum_{i \in I} \sum_{g \in G} \eta_{ig} q_{sig}$$

$$x_{sig} \leq \gamma_{sig} \qquad \forall s \in S, i \in I, g \in G \qquad (1)$$

$$\sum_{s \in S} x_{sig} \leq 1 \qquad \forall i \in I, g \in G \qquad (2)$$

$$\sum_{g \in G} x_{sig} \leq 1 \qquad \forall s \in S, i \in I \qquad (3)$$

$$q_{sig} \leq t_i \phi_{ig} x_{sig} \qquad \forall s \in S, i \in I, g \in G \qquad (4)$$

$$e_{s0} = e_{start} \qquad \forall s \in S \qquad (5)$$

$$e_{min} \leq e_{si} \leq e_{max} \qquad \forall s \in S, i \in I \qquad (6)$$

$$e_{s,i+1} = e_{si} + \delta_{si}^{e} \qquad \forall s \in S, i \in I \qquad (7)$$

$$d_{s0} = d_{start} \qquad \forall s \in S \qquad (8)$$

$$0 \leq d_{si} \leq d_{max} \qquad \forall s \in S, i \in I \qquad (9)$$

$$d_{s,i+1} = d_{si} + \delta_{si}^{d} \qquad \forall s \in S, i \in I \qquad (9)$$

 $-\sum_{g \in G} \eta_{i,g} q_{sig} - h_{si}^d \quad \forall s \in S, i \in I$ (10)

Data available is based on previous data + data gained - data used - any excess data that must be spilled

Parameters:

 $\gamma_{\text{sig}}\text{:}$ Indicator if in view during i

 η_{ig} : Download efficiency (% received)

t_i: Duration of interval (sec)

 ϕ_{ig} : Download rate (bits/sec)

 α_{ig} : Download cost (joules/bit)

 δ_{si}^{e} : net amount of energy acquired (joules)

 δ_{si}^{d} : net amount of data acquired (bits)

Variables:

 x_{sig} : Percent of interval used for download

q_{sig}: Amount of data downloaded (bits)

e_{si}: Energy available (joules)

d_{si}: Data available (bits)

h_{si}e: excess energy spilled

$$\max \sum_{s \in S} \sum_{i \in I} \sum_{g \in G} \eta_{ig} q_{sig}$$

$$x_{sig} \le \gamma_{sig} \qquad \forall s \in S, i \in I, g \in G \qquad (1)$$

$$\sum_{s \in S} x_{sig} \le 1 \qquad \forall i \in I, g \in G \qquad (2)$$

$$\sum_{g \in G} x_{sig} \le 1 \qquad \forall s \in S, i \in I \tag{3}$$

$$q_{sig} \le t_i \phi_{ig} x_{sig}$$
 $\forall s \in S, i \in I, g \in G$ (4)

$$e_{s0} = e_{start} \qquad \forall s \in S \tag{5}$$

$$e_{min} \le e_{si} \le e_{max} \qquad \forall s \in S, i \in I$$
 (6)

$$e_{s,i+1} = e_{si} + \delta_{si}^e - \sum_{g \in G} \alpha_{ig} q_{sig} - h_{si}^e \quad \forall s \in S, i \in I$$
 (7)

$$d_{s0} = d_{start} \qquad \forall s \in S \tag{8}$$

$$0 \le d_{si} \le d_{max} \qquad \forall s \in S, i \in I \tag{9}$$

$$d_{s,i+1} = d_{si} + \delta_{si}^d$$

$$-\sum_{g \in G} \eta_{i,g} q_{sig} - h_{si}^d \quad \forall s \in S, i \in I$$

$$(10)$$

$$0 \le x_{sig} \le 1$$
 $\forall s \in S, i \in I, g \in G$ (11)

$$q_{sig}, e_{si}, d_{si}, h_{si}^e, h_{si}^d \in \mathbb{R}^+ \quad \forall s \in S, i \in I, g \in G \quad (12)$$

Variable limits

Parameters:

 γ_{sig} : Indicator if in view during i

 η_{ig} : Download efficiency (% received)

t_i: Duration of interval (sec)

 ϕ_{ig} : Download rate (bits/sec)

 α_{ig} : Download cost (joules/bit)

 δ_{si}^{e} : net amount of energy acquired (joules)

 δ_{si}^{d} : net amount of data acquired (bits)

Variables:

x_{sig}: Percent of interval used for download

q_{sig}: Amount of data downloaded (bits)

e_{si}: Energy available (joules)

d_{si}: Data available (bits)

h_{si}e: excess energy spilled