Optimal Long Term Nurse Staffing Considering Absenteeism and Demand Uncertainty

<u>Kayse Lee Maass</u>, Boying Liu, Mark S. Daskin, Mary Duck, Zhehui Wang, Rama Mwenesi, and Hannah Schapiro University of Michigan Ann Arbor, MI, USA

Effects of Increased Nursing Levels

On Patients

- Decreased patient mortality rates
- Shorter patient length of stay
- Decrease in medication errors
- Lower odds of several patient adverse events
- Higher nurse-reported quality of care

On Nurses

- Decrease in nurse burnout rates
- Increase in nurse satisfaction

<u>On Costs</u>

• Already 15% of hospital costs

Effects of Increased Nursing Levels

More nurses

Better for Patients & Nurses

More nurses

Higher cost; Already 15% Of Hospital Costs

June 12, 2015

Key Issue

Unit 3 Absenteeism Distribution

High variability in census needs and nursing availability

How is nursing organized at UMHS

Absenteeism

- Nurses may not be able to provide care for patients due to:
 - Not being at work:
 - Paid Time Off
 - Unpaid Time Off
 - Conferences/Employee Development
 - Being at work:
 - Educational Commitments
 - Administrative Responsibilities

20% at UMHS Determine UMHS nurse staffing levels to:

- Ensure patient demand is satisfied
- Minimize nurse staffing costs

While accounting for uncertain:

- Demand
- Nurse Absenteeism

Formulation: Sets

J Units in a pool

S Demand scenarios

R_s Realizations of absent nurses in scenario $s \in S$

Formulation: Parameters

Daily cost per nurse

- c_j unit $j \in J$
- *d* pool
- *e* temp.

Value of extra nurse: *f*

Probability

- **q**_s of demand scenario
- θ_s^r of absenteeism realization

of nurses needed in unit $j \in J$ in scenario $s \in S$: η_{js}

of absent nurses in realization $r \in R_s$ from:

•
$$a_{js}^r$$
 unit $j \in J$

• b_s^r pool

Formulation: Decision Variables

Long Term Decisions:

of nurses to hire:

- X_j unit $j \in J$
- **Y** pool

Daily Decisions:

For unit $j \in J$, scenario $s \in S$, realization $r \in R_s$

- Z_{js}^r # of pool nurses to allocate
- W_{js}^r # temp nurses to hire
- V_{js}^r # of extra nurses

Model Formulation

$$\operatorname{Min} \sum_{j \in J} c_j X_j + dY + \sum_{s \in S} q_s \sum_{r \in R_s} \theta^r \left\{ e \sum_{j \in J} W_{js}^r - f \sum_{j \in J} V_{js}^r \right\}$$

Subject to:

 $X_{j} - a \frac{r}{js} + Z \frac{r}{js} + W \frac{r}{js} - V \frac{r}{js} \ge n_{js} \forall j \in J; s \in S; r \in R_{s}$

Unit – Unit Absenteeism + Pool Assignment + Temp – Extra \geq Needed

$$\sum_{j \in J} Z \frac{r}{js} + b \frac{r}{s} = Y \qquad \forall s \in S; r \in R_s$$

J All pool nurses are either assigned to a unit or absent

Integrality and Non-Negativity Constraints

Unit + pool + E{Temp – Extra} Cost

Example Results

- 4 Unit Pediatric
 Acute Care Pool
- 366 days in 2012

	Cost	P(Absent)
Unit	\$400	0.2
Pool	\$425	0.2
Temp	\$460	0
Extra	\$200	

Genetic Algorithm Parameters	Value
Pop. Size	25
Max Generations	100,000
Max Generations w/out an improvement in the pop.	20,000
P(Mutation)	0.25
Reps/day	20

June 12, 2015

Sensitivity to P(Absent)

Why Does This Happen?

	Nominal Cost	P(Absent)	Cost/Contact Day
Unit	\$400	0.2	\$500
Pool	\$425	0.2	\$531.25
Temp	\$460	0.0	\$460

Unit and Pool nurses more \$ per contact hour Why use them?

... But Temp Nurses Are Not As Good

Use POOL w/ 17% temp penalty

June 12, 2015

Kayse Lee Maass University of Michigan

Limit on the # of temp nurses that can be hired

$$P\left(\sum_{j\in J} W_{js}^r > \tau; \forall s \in S; r \in R_s\right) \le \alpha$$

P(use more than τ temps in any realization) $\leq \alpha$

Chance Constraint Results

P(5 or more temp nurses needed) $\leq \alpha$

No employees hired when Prob=1
 More hired as Prob goes down

June 12, 2015

Kayse Lee Maass University of Michigan

 With current staffing costs and absenteeism rates, the "cost minimizing" solution does not use hospital based nurses.

- Hospital based nurses are used if
 - Penalty using temps is $\geq 8.7\%$
 - Absenteeism rate \leq 70% its current rate
 - Account for limited availability of temp nurses

 The work of the first author was supported in part by grant DGE 1256260 from the National Science Foundation.

Thank You!