Improving Resident Rotation Scheduling to Maximize Training Opportunities

Cube Sponsors:

Amy Cohn, PhD, Industrial and Operations Engineering, CHEPS
F. Jacob Seagull, PhD, Medical Education
Rishi Reddy, MD, Thoracic Surgery

Students: William Pozehl (IOE), Ryan Chen (IOE), Asher Perlmutter (CSE), Hussein Fardous (Med)
Motivating Societal Challenge

Cardiovascular Surgery

Shortage of Cardiothoracic Surgeons Is Likely by 2020

Atul Grover, MD, PhD; Karyn Gorman, MSPA; Timothy M. Dall, MS; Richard Jonas, MD; Bruce Lytle, MD; Richard Shemin, MD; Douglas Wood, MD; Irving Kron, MD

Background—Even as the burden of cardiovascular disease in the United States is increasing as the population grows and ages, the number of active cardiothoracic surgeons has fallen for the first time in 20 years. Meanwhile, the treatment of patients with coronary artery disease continues to evolve amid uncertain changes in technology. This study evaluates current and future requirements for cardiothoracic surgeons in light of decreasing rates of coronary artery bypass grafting procedures.

Methods and Results—Projections of supply and demand for cardiothoracic surgeons are based on analysis of population, physician office, hospital, and physician data sets to estimate current patterns of healthcare use and delivery. Using a simulation model, we project the future supply of cardiothoracic surgeons under alternative assumptions about the number of new fellows trained each year. Future demand is modeled, taking into account patient demographics, under current and alternative use rates that include the elimination of open revascularization. By 2025, the demand for cardiothoracic surgeons could increase by 46% on the basis of population growth and aging if current healthcare use and service delivery patterns continue. Even with complete elimination of coronary artery bypass grafting, there is a projected shortfall of cardiothoracic surgeons because the active supply is projected to decrease 21% over the same time period as a result of retirement and declining entrants.

Conclusion—The United States is facing a shortage of cardiothoracic surgeons within the next 10 years, which could diminish quality of care if non-board-certified physicians expand their role in cardiothoracic surgery or if patients must delay appropriate care because of a shortage of well-trained surgeons. (Circulation. 2009;120:488-494.)

Key Words: economics ■ surgery ■ technology ■ workforce
Motivating Societal Challenge

- 3 of 10 deaths due to cardiovascular or COPD in the United States
- Medicare population expected to double by 2030
- Aging cardiothoracic (CT) surgeons
 - Mean age: 55 years old
 - 65% (lung) and 70% (heart) are 51+ years old
- Decreasing number of CT surgeons nationally
 - 2004-08: 26% decline in CT fellows
 - 2010: fewer applicants than positions (93/116)
4 x 10 does NOT always equal 40!

• Our original project started with this seeming contradiction
 – An average of 40 transplants per year at UMHS
 – 4 residents alternating call in rotation
 – 10 transplants required for certification
 – Most residents were struggling to get adequate training
What we did about it

• Built a computerized tool to educate clinicians about randomness and impact on scheduling
• Developing new scheduling paradigms to improve training – more efficient and more effective
Current State

Mean Number of Fellows Certified = 1.91

Percentage of Repetitions

Number of Fellows Certified

- 7.3%
- 27.4%
- 37.4%
- 22.6%
- 5.3%
On Call Until Procedure

Mean Number of Fellows Certified = 1.94

Percentage of Repetitions

Number of Fellows Certified

0 1 2 3 4

41.6% 6.4% 6.8% 6.6% 38.5%

Mean Number of Fellows Certified = 1.94
On Call Until Certified

Mean Number of Fellows Certified = 1.91

Percentage of Repetitions

Number of Fellows Certified

0.0% 0.0% 7.1% 53.9% 38.9%

Mean Number of Fellows Certified = 1.91
How can we re-design residency programs to provide more efficient training, higher quality of patient care, and greater appeal to future potential surgeons?
Determining Current Solutions

• Predominant models of problem solving
 – How is scheduling done currently?
 – What data is needed to create schedule?
 – Who is involved?

• Factors that guide the process
 – Goals
 – Constraints
 – Rules
 – Wishes
Survey of U of M Programs

Program Directors & Coordinators:
- General surgery
- Cardiothoracic surgery
- Vascular surgery
- Neurosurgery
- Otolaryngology
- Ob/Gyn
- Pediatric surgery

Chief Residents & Residents:
- Orthopedic surgery
- Plastics
- Urology
- Vascular surgery
Model 1: Interactive

- Synchronous
- Multi-party
 - Resident representatives
 - Program directors
 - Other program reps
- Multi-constraint
Model 2: Central Coordination

- Asynchronous, iterative
- Centralized
- Multi-party
 - Program coordinator
 - Other program representatives
- Multi-constraint
Model 3: Simple Template

- Limited options
- Limited participants
- Variations:
 - Central assignment
 - “Random”
 - Draft process

<table>
<thead>
<tr>
<th></th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Time
Considerations

System perceived as equitable

Types of goals, constraints, rules, & wishes

• Explicit
 – Balance of expertise (by PGY, or individual quality)

• Hidden
 – Seasonal variations (by expected specialty, or by interest) (e.g. pediatrics in summer has higher volume)

• Wish list
 – Load balancing (schedule easy blocks between hard blocks; vacation plans with flexible services)
Potential Engineering Interventions

• Optimization algorithm for determining and assigning block schedules

• Analytics and metrics for tracking resident progression toward goals

• Visualization techniques for individualized tracking
Potential Engineering Solutions

Construct block schedules using optimization and interactive revision

NUMERICAL OPTIMIZATION

Objective: Min \(y_r \)

Subject to:

\[
1 \leq \sum_{\forall v \in \beta} \sum_{\forall r \in \alpha(v)} x_{r,v} \leq 2, \quad \forall d \quad v,v,s \in (7a,4p,8p)
\]

\[
L_B \leq \sum_{\forall v \in \beta} \sum_{\forall r \in \alpha(v)} x_{r,v} \leq U_B, \quad \forall r
\]

\[
\sum_{\forall v \in \beta} \sum_{\forall r \in \alpha(v)} x_{r,v} = 0, \quad \forall r
\]

Decision variable: \(y_r, y_{v,r} \in \{0,1\} \)

INPUT
- Input Program Data from Excel or Text Files
- Resident Data
- Program Requirements

OUTPUT
- Monthly Schedule
- Schedule by Resident
- Metrics Report

ORSA
Builds a schedule in less than 2 seconds

USE ORSA TO INTERACTIVELY IMPROVE SCHEDULE

GOOD ENOUGH?
- Yes
- No

NEED CHANGE?
- Yes
- No

END
Use visual analytics for individualized tracking

Mediastinoscopies

Current = 6
Required = 20

Show progress details
11/17 – Show case details
11/29 – Show case details
Additional Goals

• Coordinate input from multiple, linked departments

• Prioritize needs of residents across years and departments

• Facilitate shared knowledge of progress amongst residents, faculty, and departments
We thank the following parties for making this work possible:

- UM MCubed Initiative
- Center for Healthcare Engineering and Patient Safety
- UM Summer Undergraduate Research Experience
- The Seth Bonder Foundation
- The Doctors Company Foundation

Amy Cohn | amycohn@med.umich.edu
Rishindra Reddy | reddyrm@med.umich.edu
F. Jacob Seagull | jseagull@med.umich.edu
William Pozehl | pozewil@umich.edu