Patient Flow at C.S. Mott Children's Hospital

Mark Grum¹, Hassan Abbas², Prof. Amy Cohn¹, Dr. Michelle Macy³, Dr. Allison Cator³

1. Industrial and Operations Engineering, 2. School of Nursing 3. Emergency Medicine at Mott Children's Hospital

Website: www.cheps.engin.umich.edu
www.cheps.engin.umich.edu
www.cheps.engin.umich.edu

Motivation

- Emergency departments (ED) and inpatient units (IU) are complex, interacting systems
- Understanding how these systems work or interact can improve patient care
- Goal: Improve quality of care delivery and help patients and their families understand hospital processes
- Approach: Incorporating clinician involvement, collecting data through observations and analyzing our findings

Visualization

Objective:

 Build an interactive map for those involved (patients, doctors, nurses, etc.) in ED and IU processes

Methods:

- Creating this flow chart involved over **100** hours of clinical observations to comprehend the following perspectives:
 - Attending Physicians
 - Resident Physicians
 - Nurses
 - Patients

Implications:

• Educate patients, families, and providers on the following key concepts to facilitate care delivery for all stakeholders

Extensions:

 Creating an ED flow map will benefit those involved and help identify key differences between inpatient units and the ED

Predictive Modeling

Objective:

• Create a tool to aid physicians in predicting disposition early to enable better resource planning

Methods:

- Used neural networks and a support vector machine to predict clinical outputs
 - We use 70% of our data for training, 15% for validation, and 15% for testing

	NN Disposition					
Results:			discharge	admit		NN:
	ED Dispo.	discharge admit	83%	17%	164	81.74%
	LD Dispo.	admit	21%	79%	77	accuracy
			152	89		
		SVM Disposition				
			discharge	admit		SVM:
	ED Dispo.	discharge admit	91%	9%	164	82.32%
	LD Dispo.	admit	47%	53%	77	accuracy

Simulation

Objective:

• Determine whether (or not) an observation unit will benefit Mott, and if so, how to operate it

Methods:

- Analyze service level data, using the mean, standard deviation, and probability distribution of arrival waiting times and treatment processes
- Simulate in ProModel and Matlab using our analyzed data to replicate the current state and evaluate the appropriateness of an observation unit

Future Work:

- Compare the benefits and costs to determine if the observation unit would give value to patients, doctors, and nurses
- Fit service and arrival distributions
- Finish coding simulation
- Sensitivity analysis

186