Customization vs. Convenience
When Developing Healthcare Scheduling Tools

Amy Cohn
University of Michigan
amycohn@med.umich.edu
CHEPS.engin.umich.edu

SHS Conference Orlando
February 2015
Driving Value in Healthcare through Leadership and Education

Key Learning: What waste do you see on a day to day basis that makes you wacky?

#SHS2015 #SHSwackywaste

@UofMCHEPS @ProfAmyCohn
Acknowledgments

• Several years of excellent students and stellar clinical collaborators
• Current Chief Resident: Ed O’Brien
• Current students: Young-Chae Hong, Billy Pozehl, Peter Mayoros, Ji Wang, Elizabeth Olin, Zak VerSchure, Brian Lemay, Yicong Zhang, Brittany Lopez
• Financial and moral support: The Bonder Foundation, The Doctors Company Foundation, CHEPS, UCH, UMHS (Pediatrics and Surgery), UM CoE SURE Program
Talk Overview

• What is healthcare provider scheduling and why is it challenging?
• Why are good schedules important?
• How are schedules typically built today?
• How can optimization tools help?
• “Customization vs. convenience”
• Conclusions, questions, and discussion
An Example:

Peds ED Shift Scheduling

• Assigning residents to shifts to cover the pediatric emergency department in Mott Children’s Hospital at UMHS

• Month-long schedule

• Approximately 15 residents per month, coming from four or five different residency programs
An Example:
Peds ED Shift Scheduling

• Patient care requirements:
 – 7 overlapping shifts every day of the month
 – Every shift has to have exactly one resident assigned
 – Exceptions: 12p – 9p shift coverage is optional
 • Not all of these shifts can be left uncovered for the entire month
 – Certain shifts cannot be assigned to an intern
 – Certain overlapping pairs of shifts require a Peds resident on at least one of the two shifts
 – ...

An Example: Peds ED Shift Scheduling

• Resident availability
 – Senior residents switch on the first of the month
 – Interns switch on the 27th of the preceding month
 – Pre-assigned vacation time must be respected
 – Continuity clinics/post CC
 – Some shifts are pre-assigned to certain residents/programs
 – 10-hour rest rule
 – First and last shifts must recognize boundaries of other rotations
 – ...
What is healthcare provider scheduling and why does it matter?

• Assigning providers (nurses, residents, attendings...) to:
 – Times
 – Places
 – Tasks

• So as to meet:
 – Patient needs (quality and continuity)
 – Provider needs (short term satisfaction, long-term pipeline)
 – Educational needs (for residents) – short- and long-term impact on patient care
Why is it difficult?

• Many complex and inter-dependent rules
• Tightly constrained resources
• Heterogeneity of providers, clinical environments
• Multiple competing goals
• Large-scale combinatorial optimization problem with ill-defined, multi-criteria objective function
How are schedules typically built today?

- “Computerized”
 - Mainly computerization of data entry
 - Some error checking
 - Good for disseminating, ties to payroll
 - Not so good for schedule creation except when very rigid (e.g. “every fourth night”)
How are schedules typically built today?

• Manually
 – Senior nurse schedules other nurses
 – Designated attending schedules other attendings
 – Chief Resident schedules other residents

• Yields power but also conflict

• Time consuming

• Poor use of skills and resources

• Reduced quality of solutions
How can optimization tools help?

• Core of scheduling is like a giant sudoku
• When solving manually, if you find an error, you have to re-start from scratch or allow rule violations
• But rules can inherently be modeled as sequences of simultaneous equations
General Mathematical Approach

• These are all combinatorial optimization problems
 – Set of decisions to make (assigning people to places and times)
 – Set of constraints to ensure acceptability
 – Objective function / metrics
• Binary assignment variables
• Linear constraints
General Mathematical Approach

• E.g. “$x_{rsd} = 1$” translates to “Resident r is assigned to work shift s on day d”

• How would we say “Resident r has to work exactly n shifts?”
General Mathematical Approach

• E.g. “\(x_{r_{sd}} = 1 \)” translates to “Resident \(r \) is assigned to work shift \(s \) on day \(d \)”

• How would we say “Resident \(r \) has to work exactly \(n \) shifts?

\[
\sum_{s \text{ in } S} \sum_{d \text{ in } D} x_{r_{sd}} = n
\]
Our Projects

• Scheduling
 – Call schedule for Psych residents at BUSM
 – Block schedule for Peds residents at CHM
 – Shift schedule for pediatric ED at UMHS
 – Block schedule for UMHS peds residents
 – Block schedule for UMHS surgical residents
 – OR/clinic time for UCH surgical attendings

• Optimization-based software in C++/Cplex
Importance of true collaboration to define functionality

- Surprisingly hard for people to articulate their requirements
- Frustrating and time consuming to try to build the perfect system first time out
- Iterative, incremental approach much more effective
Key Issues

• Importance of variable definition to ensure a viable model
 – Balance of information in the variables vs in the constraints
 – Shift assignments vs service pairs vs sequences vs templated sequences
Key Issues

• How to address multi-criteria objective function
 – Challenges with weights
 • Hard to quantify
 • Non-linearities
 • Impact on performance
 – What do people really want? Surprise – it’s *not* optimality!
 – Interactive, incremental improvement approach
“Customization vs. Convenience”

• Importance of flexibility:
 – New rules and requirements arise all the time
 – Sometimes significant (7 shifts a day becomes 8; Christmas holidays treated completely differently from the rest of the year)
 – Sometimes small but critical (resident coming off maternity leave needs a specific set of shifts to complete her program)
 – Whenever possible, want to avoid new design, new code
“Customization vs. Convenience”

• Challenges of customization

 – The more general you are, the more complex the data entry and parameter setting
 – The more general you are, the less likely you are to have easy convergence
 – The more general you are, the harder it is to maintain the code
“Customization vs. Convenience”

- In moving from one project to the next we often find ourselves re-doing the same work.
- We want to find the sweet spot between maintaining multiple separate programs and making a single program that is too complex/doesn’t meet any one program’s needs.
- Generalization approach: an adaptable framework that uses input files and flags to turn on and off different functionality.
Importance of continuing collaborations:

- We don’t ever want to reach the point where we hand it off (or shrink wrap it) and walk away
- We learn too much from working with the clinicians!
 - Continuously improving the tools
 - Identifying new problems to work on
 - Educating them in a more “engineering way” of thinking
CHEPS: Center for Healthcare Engineering and Patient Safety

Four-year old collaborative center between medicine, engineering, nursing, public health and more.
Questions and Discussion