Improving Patient Flow in an Outpatient Infusion Center

Pamela Martinez Villarreal\(^1\), Matthew Rouhana\(^1\), Prof. Amy Cohn\(^1\), Sarah Bach\(^1\), Jeremy Castaing\(^1\), Dr. Alon Weizer\(^2\), Louise Salamin\(^2\)

\(^1\) Department of Industrial and Operations Engineering, \(^2\) University of Michigan Comprehensive Cancer Center

Background:
- Lab results needed: (1) by provider before clinic appointment to assess patient and (2) by pharmacy to initiate drug preparation/infusion process
- Concerned about (1) patient waiting time (2) balanced workload (3) lab results being available during clinic appointment
- **Possible Solution:** “Uncoupling” patient visits (labs done at least one day prior to clinic appointment at any MLab Facility)

Methods:
- Analyzed previous time study data of phlebotomy and pathology
- Analyzed patient travel times

Findings:
- Processing time for labs (CBCD, CMP, Type and Screen) exceeds one hour threshold
- Conclusion: Potential to uncouple visits for patients within close proximity to a lab facility (more convenient and better flow)

Lab Process Analysis

<table>
<thead>
<tr>
<th>Driving Duration</th>
<th>% of Patients to Closest Lab Facility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 15 min</td>
<td>32%</td>
</tr>
<tr>
<td>15 – 30 min</td>
<td>20%</td>
</tr>
<tr>
<td>30 – 60 min</td>
<td>23%</td>
</tr>
<tr>
<td>1 – 2 hours</td>
<td>15%</td>
</tr>
<tr>
<td>2 – 4 hours</td>
<td>7%</td>
</tr>
<tr>
<td>Over 4 hours</td>
<td>3%</td>
</tr>
</tbody>
</table>

Pharmacy Pre-mix Tool

Background:
- Infusion drugs are expensive and their use uncertain (e.g. patient cancellation). Thus, pharmacy does not prepare most drugs in advance
- “Pre-mixing” may help improve patient waiting times/workload balance
- **Possible Solution:** Evaluate trade-offs of improved wait/workload vs. risk of drug waste, determine which drugs can be prepared in advance

Methods:
- Collected and analyzed data on prices, treatment times, deferral rate, etc.
- Developing mathematical formulation of tradeoff (in progress)

<table>
<thead>
<tr>
<th>Input</th>
<th>Effect on Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drug cost</td>
<td>Low cost ➔ Higher priority</td>
</tr>
<tr>
<td>Probability of deferral or dosage change</td>
<td>Low probability ➔ Higher priority</td>
</tr>
<tr>
<td>Number of patients receiving drug</td>
<td>Higher number of patients ➔ Higher priority</td>
</tr>
<tr>
<td>Drug shelf life (hang by/expiration)</td>
<td>Long shelf life ➔ Higher priority</td>
</tr>
<tr>
<td>Drug compounding time</td>
<td>Possibly short compounding time ➔ Higher priority</td>
</tr>
<tr>
<td>Appointment time</td>
<td>Early appointment time ➔ Higher priority</td>
</tr>
<tr>
<td>Length of infusion</td>
<td>Long infusion ➔ Higher priority</td>
</tr>
</tbody>
</table>

Chemotherapy Infusion Scheduling

Background:
- Patients wait ~45 minutes after arrival at infusion until being seated in a chair, due to high treatment time variability
- **Possible Solution:** Improved scheduling of infusion patients could result in reduced total length of operations and patient wait time

Methods:
- Developed stochastic optimization model and solution algorithms that can generate appointment schedules, validated with (discrete-event) simulation
- **Stochastic Optimization Model:**
 - **Minimize:** Trade-off between expected patient wait time and expected overtime
 - **Subject to:**
 - Patients are assigned to a time and a chair
 - Patients wait until a nurse and a chair are available
 - Uncertain treatment times (Sample Average Approximation method)
 - The day ends when the last patient is discharged
 - **Findings:**
 - Allowing extra time for highly variable treatments and increasing appointment lengths in the middle of the day help to prevent and recover from propagating delays
 - **Next Steps:** Incorporate patient acuity into model, develop and implement scheduling guidelines

Acknowledgements:
This research is generously supported by the Center for Healthcare Engineering and Patient Safety, the Seth Bonder Foundation, the Doctors Company Foundation, the U of M College of Engineering SURE Program, and the UMHS Comprehensive Cancer Center.

Clinical Collaborators: Corinne Hardecki, Jennifer Mathie, Carol McMahon, Kelly Procailo, Carolina Typaldos

Student Collaborators: Hassan Abbas, Vera Lo, Vanessa Morales, Donald Richardson, Stephanie See