

Improving Patient Flow in an Outpatient Infusion Center Pamela Martinez Villarreal¹, Matthew Rouhana¹, Prof. Amy Cohn¹, Sarah Bach¹, Jeremy Castaing¹, Dr. Alon Weizer², Louise Salamin²

Lab Process Analysis

Background:

- Lab results needed: (1) by provider before clinic appointment to assess patient and (2) by pharmacy to initiate drug preparation/infusion process
- Concerned about (1) patient waiting time (2) balanced workload (3) lab results being available during clinic appointment
- *Possible Solution:* "Uncoupling" patient visits (labs done at least one day prior to clinic appointment at any MLab Facility)

Methods:

- Analyzed previous time study data of phlebotomy and pathology

 Analyzed patient travel times 			
Findings:		Input	
		Drug cost	Low cos
Driving Duration	% of Patients to Closest Lab Facility	Probability of deferral or dosage	Low pro
Less than 15 min	32%	change	
15 – 30 min	20%		Lighor
30 – 60 min	23%	Number of patients receiving drug	Higher
1 – 2 hours	15%		priority
2 – 4 hours	7%	Drug shelf life (hang by/expiration)	Long sh
Over 4 hours	3%	Drug compounding time	Possibly
			Higher
 Processing time for labs (CBCD, CMP, Type and Screen) exceeds one hour threshold 		Appointment time	Early ap
			priority
 Conclusion: Potential to uncouple visits for patients within close 		Length of infusion	Long in
proximity to a lab facility (more co	onvenient and better flow)		

Acknowledgements:

This research is generously supported by the Center for Healthcare Engineering and **Clinical Collaborators:** Corinne Hardecki, Jennifer Mathie, Carol McMahon, Kelly Procailo, Carolina Typaldos Patient Safety, the Seth Bonder Foundation, the Doctors Company Foundation, the U of **Student Collaborators:** Hassan Abbas, Vera Lo, Vanessa Morales, Donald Richardson, Stephanie See M College of Engineering SURE Program, and the UMHS Comprehensive Cancer Center.

2015 Healthcare Systems Process Improvement Conference

1. Department of Industrial and Operations Engineering, 2. University of Michigan Comprehensive Cancer Center

Pharmacy Pre-mix Tool

Background:

- Infusion drugs are expensive and their use uncertain (e.g. patient cancellation). Thus, pharmacy does not prepare most drugs in advance • "Pre-mixing" may help improve patient waiting times/workload balance • *Possible Solution:* Evaluate trade-offs of improved wait/workload vs. risk of drug waste, determine which drugs can be prepared in advance
- Methods:
- Collected and analyzed data on prices, treatment times, deferral rate, etc. • Developing mathematical formulation of tradeoff (in progress)

Effect on Priority

- ost \rightarrow Higher priority probability \rightarrow Higher priority
- r number of patients \rightarrow Higher
- shelf life \rightarrow Higher priority
- bly short compounding time \rightarrow r priority
- appointment time \rightarrow Higher
- infusion \rightarrow Higher priority

Chemotherapy Infusion Scheduling

Background:

- Patients wait ~45 minutes after arrival at infusion until being seated in a chair, due to high treatment time variability
- *Possible Solution:* Improved scheduling of infusion patients could result in reduced total length of operations and patient wait time

Methods:

- Developed stochastic optimization model and solution algorithms that can generate appointment schedules, validated with (discrete-event) simulation
- Stochastic Optimization Model:

Minimize:

Subject to:

Findings:

- Allowing extra time for highly variable treatments and increasing appointment lengths in the middle of the day help to prevent and recover from propagating delays
- Next Steps: Incorporate patient acuity into model, develop and implement scheduling guidelines

- Trade-off between expected patient wait time and expected overtime
- Patients are assigned to a time and a chair Patients wait until a nurse and a chair are available Uncertain treatment times (Sample Average Approximation method) The day ends when the last patient is discharged