Predicting Disposition for Pediatric Asthma Patients

Vanessa Morales¹, Elizabeth Olin¹, Prof. Amy Cohn¹, Dr. Michelle Macy², Dr. Allison Cator²

1. Industrial and Operations Engineering , 2. Emergency Medicine at Mott Children's Hospital

University of Michigan - Ann Arbor

Collaborators

- Gabriel Zayas-Caban, Ph.D.
- Young-Chae Hong, Ph.D candidate IOE
- Joseph East, IOE MS & MHSA
- Hassan Abbas, Nursing
- Mark Grum, IOE MS
- Brooke Szymanski, Nursing
- Stephanie See, BSN

Agenda

- Background
- Data
- Preliminary Results
- Continuing Work
- Implications

U of M Mott Children's Hospital

- Part of the University of Michigan Health System
- Brand new facility
- 350 Beds
- 28 Emergency Department beds

U of M Mott Children's Hospital

Emergency Department

Project Motivation

- Difficult to make disposition decisions
- Ramifications of incorrect decisions
 - ED Readmits
 - Inappropriate admissions
- Mobilization of resources
 - Many levels of coordination in the hospital system
 - Long length of stays

Objective and Approach

Method of Development

Approach: Neural Networks

- Supervised Machine Learning
- Mathematical way to model how our brain learns
 - Neuron
 - Synapses
- Captures and represents complex nonlinear relationships

Neural Networks

Input Layer

Neural Networks

Input Layer

Neural Networks

Agenda

- Background
- Data
- Preliminary Results
- Continuing Work
- Implications

Data Source

- C.S. Mott Children's Hospital ED
- Electronic Medical Record MiChart (EPIC)
- June 2012-March 2013
- 18,000 cases

Data Variables

Demographic Variables

- Age
- Sex
- Gender
- Race
- Payer
- Acuity level
- Time of admission

Clinical Variables

- Medications given
- Medication counts
- Blood pressure
- Weight
- Temperature
- Respiratory rate
- SpO2

Population Selection

Comparatively simple testing and treatments

Data Variables

Disposition Decision

- 0- discharge
- 1- admit

Agenda

- Background
- Data
- Preliminary Results
- Continuing Work
- Implications

Preliminary Results

Preliminary Results: Single Model

(All Time Periods)

Actual Disposition

NN Disposition discharge 89% 17% 164
admit 21% 61% 77

Multiple Model Approach

Preliminary Results: Multiple Models

(Cumulative Time Frames)

Agenda

- Background
- Data
- Preliminary Results
- Continuing Work
- Implications

Continuing Work

- Better designed feature space
- More data
- Validate with different methods:
 - SVM
 - Regularized Logistic Regression, significant variables
- Analysis on "Corrected" Disposition
- Predict Length of Stay (LOS) as output:
 - Better aid to disposition decision ~ observation unit candidates
- Expanding to include other patient populations

Agenda

- Background
- Data
- Preliminary Results
- Continuing Work
- Implications

Implications

- Earlier disposition prediction = earlier mobilization of resources
 - Patients that should go home will go some sooner and free up beds for other patients in need
 - Very sick patients will get treatment at the appropriate level of care faster
- Accurate prediction of disposition can result in better patient outcomes
 - Fewer readmissions
 - Fewer inappropriate admissions

Acknowledgment

- Center for Healthcare Engineering and Patient Safety (CHEPS)
- C.S Mott Children's Hospital
- The Bonder Foundation
- The U of M Center for Research on Learning and Teaching (CRLT)
- The TDC Foundation

CHEPS and the HEPS Master's Program

- CHEPS: The Center for Healthcare Engineering and Patient Safety
- HEPS: Industrial and Operations Engineering (IOE) Master's Concentration in Healthcare Engineering and Patient Safety offered by CHEPS
- CHEPS and HEPS offer unique multidisciplinary teams from engineering, medicine, public health, nursing, and more collaborating with healthcare professionals to better provide and care for patients
- For more information, contact Amy Cohn at <u>amycohn@umich.edu</u> or visit the CHEPS website at:
 - https://www.cheps.engin.umich.edu

Questions

vmorales@umich.edu oline@umich.edu