Coordination of Surgical Blocks and Ambulatory Clinics at a Large Teaching Hospital

Brian Lemay

University of Michigan

11-10-2014

Co-authors: Prof Amy Cohn, Dr. Jose Melendez, Elizabeth Olin, Emily Porritt, Billy Pozehl, Suzanne Sullivan, Yicong Zhang
Outline

• Motivation and Background
• Goals
• Inputs
• Decisions, Constraints, and Objective
• Initial Results
• Challenges
• Conclusions/Future Work
Motivation
Background

• Colorado Health System
 – Numerous locations and specialties
 – Piloting project for Orthopedics

• Providers
 – Require both Operating Room (OR) and Clinic Room time
 – Must satisfy numerous individualized requirements
 – Limited work locations

• Current Schedule
 – Pieced together over time
 – Minimal “wiggle-room”
 – Providers want more time
Goals

• Develop a **mathematically-based decision support tool** that **efficiently schedules** health care providers into **operating and clinical rooms** over a monthly horizon

• **Enable what-if analyses** for incorporating new providers, adding new rooms, addressing bottlenecks, and improving existing schedules
Inputs

• Types of rooms
• Room locations
• Room availabilities
• Provider availabilities
• Allowable daily schedules
• Provider room requirements (work packages)
• Scheduling considerations
 – Continuity across weeks
 – Specialty Coverages
Decisions

• **Sequence:** a combination of room types and how many rooms of each type that make up a single, feasible day of work
 – (e.g. 2 Denver ORs in the AM and 4 Denver Clinic rooms in the PM)

• **Decision Variables:** Does provider p work sequence s on day d of week w?
Constraints

• Must work a sequence every day
• Allowable sequences
• Provider room requirements
• Limited provider availability
• Weekly continuity
• Strict room capacities
• Specialty coverage requirements
Objective

• Minimize the total number of *virtual rooms* that are used
 – *Virtual Room*: A room that doesn’t physically exist, but is used to represent a planned overbooking

• *Other metrics*: continuity, required travel, number of rooms
Initial Results

• Monthly schedule with reduced room overutilization is quickly generated

• Report is generated on room utilization which enables identification of room over/underutilization

• Capable of what-if analyses:
 – Hiring a new providers
 – Adding new rooms
 – Modifying current work packages
Challenges

• Learning each other’s languages
 – Identifying scheduling rules / constraints
 – Ease vs. complexity of implementation

• Identifying where scheduling flexibility exists
 – How flexible is the system?
 – How much flexibility to include in the model?
Future Work

• Identify and implement additional scheduling requirements

• Incorporate schedule quality metrics into objective

• Standardize process for gathering inputs and generating new schedules

• Expand scope of scheduling
Thank You!

Contact info:
blemay@umich.edu
amycohn@umich.edu

We thank Dr. Jose Melendez, Suzanne Sullivan, Emily Porritt and the many others at UCH for their continued time and insights!
CHEPS and the HEPS Master’s Program

- **CHEPS**: The Center for Healthcare Engineering and Patient Safety
- **HEPS**: Industrial and Operations Engineering (IOE) Master’s Concentration in Healthcare Engineering and Patient Safety offered by CHEPS
- CHEPS and HEPS offer unique multidisciplinary teams from engineering, medicine, public health, nursing, and more collaborating with healthcare professionals to better provide and care for patients
- For more information, contact Amy Cohn at amycohn@umich.edu or visit the CHEPS website at: https://www.cheps.engin.umich.edu