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Motivations

e Current state:

Average waiting time from arrival to infusion area to
beginning of treatment is 42 minutes

e Goal:

Generate appointment schedules that reduce patient
waiting times and total length of day of operations



Outline of the presentation

e Description of the problem

* Stochastic Optimization Model
* Decomposition Algorithm

e Future Research
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Outline of the presentation

* Description of the problem



The Scheduling Process

 Phase 1: Online Scheduling (Day-15 to Day-2)
— Patient/Physician calls to schedule an appointment

— Scheduler assigns patient to a day and a slot
— Scheduler gives approximate appointment time

* Phase 2: Fine-Tuning Optimization (Day-2)
— Once the list for a day is full, we set final appointment times

— We preserve patients sequence so that final times are close to
original estimates

— We optimize appointment times to minimize patient waiting
and staff overtime
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Assumptions

e 12 patients have to be scheduled (according to a given sequence)
— Appointment time
— Chair assignment

* 3 chairs are available (infusion pod)
1 nurseis responsible for the patients assigned to those 3 chairs

 We assume that patients arrive on time
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* Treatmentt,  and preparation timess,  are random parameters
* From historical data analysis we divide patients in 5 types
* Each type has specific distributions



Definition of Scenarios

* How to construct a scenario w:
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Outline of the presentation

* Stochastic Optimization Model
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Overview of the model

First Stage Decision:
Appointment Times:a,  Continuous >0

Second Stage Decision:

Chair Assignment: x® . Binary 1 iff patient p is assigned to

chair cin scenario w
Other Variables:

Waiting Time: w® Continuous >0
End of Day: E¥ Continuous >0
Discharge Time: d* Continuous >0



min AYL Do wy+(1=X) ) E¥ (0)

a,xw’dw’ww7Ew pEP WEQ WGQ
Objective: Trade-off between the total expected waiting time and the expected end of the
day.

Variables : Parameters :
a;, . appointment time of patient p sy treatment time of patient p in scenario w
d; : discharge time of patient p in scenario w t, : treatment time of patient p in scenario w
w, @ waiting time of patient p in scenario w A : weight in objective
E* : end of the day in scenario w M : big constant
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min AYL Do wy+(1=X) ) E¥ (0)

a’xw’dw’ww7Ew pEP WEQ WEQ
subject to Y x5, =1 Vp e P, Yw € () (1)
ceC

Each patient is assigned to exactly one chair in each scenario.

Variables : Parameters :
a;, . appointment time of patient p sy treatment time of patient p in scenario w
d; : discharge time of patient p in scenario w t, : treatment time of patient p in scenario w
w, @ waiting time of patient p in scenario w A : weight in objective
E* : end of the day in scenario w M : big constant
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min AYL Do wy+(1=X) ) E¥ (0)

a,r%,dv , wv ,Ev PEP weN weD
subject to Y x5, =1 Vp e P, Yw € () (1)
ceC
ap +wy + 55+t =d Vp e P, Yw € Q) (2)

Definition of the discharge time of each patient in each scenario.

Variables : Parameters :
a;, . appointment time of patient p sy treatment time of patient p in scenario w
d; : discharge time of patient p in scenario w t, : treatment time of patient p in scenario w
w, @ waiting time of patient p in scenario w A : weight in objective
E* : end of the day in scenario w M : big constant
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min AYL Do wy+(1=X) ) E¥

a,xw’dw’ww7Ew pEP we we
1 w
subject to Y x5, =1
ceC

ap +wy + sy + 5 =dj
ap, +wy + M(2— 22 . — x5

pgc)

(0)
Vp € P, Yw € () (1)
Vp € P, Yw € ) (2)
(3)

>dy, Vee O, Vpy >p2 € P, Vw € ()

A patient can sit on his chair only if all the previous patients assigned to his chair have

been discharged.

Variables :

a, : appointment time of patient p

d; : discharge time of patient p in scenario w
w, @ waiting time of patient p in scenario w
E* : end of the day in scenario w

A >

Parameters :

sy © treatment time of patient p in scenario w

t, @ treatment time of patient p in scenario w
A : weight in objective
M : big constant
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min AYL Do wy+(1=X) ) E¥ (0)
a,xw’dw’ww7Ew pEP WEQ WEQ
subject to Y x5, =1 Vp e P, Yw € () (1)
ceC
ap +wy + 55+t =d Vp e P, YVw € () (2)
ap, +wy + M2 -y  —x5 ) >ds VeeC, Vp1 >p2 € P, Vwe (3)
ap, + u_JZ‘;’1 > ap, +wp, + S, Ypl >pa € P, AVw e Q) (4)

A patient can sit on his chair if the nurse has finished to prepare all previous patients on
his pod.

Variables : Parameters :
a;, . appointment time of patient p sy treatment time of patient p in scenario w
d; : discharge time of patient p in scenario w t, : treatment time of patient p in scenario w
w, @ waiting time of patient p in scenario w A : weight in objective
E* : end of the day in scenario w M : big constant
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min

AYL Do wy+(1=X) ) E¥

a’xw’dw’ww7Ew pGP WEQ WGQ
subject to Y x5, =1 Vp € P, Yw € 1
ceC
ap +wy + 55+t =d Vp € P, Yw € () 2

ap, +ws + M2 -8, —xy ) >dy VeeC, Vpr>p2 € P, Ywe

Ap, + Wy, = Apy + W5, + Sy, Vp1 >ps € P, Yw € Q 4

E* > dy Vp e P, YVw € () 5

Definition of the end of the day in each scenario.
Variables : Parameters :

a;, . appointment time of patient p sy treatment time of patient p in scenario w
d; : discharge time of patient p in scenario w t, : treatment time of patient p in scenario w
w, @ waiting time of patient p in scenario w A : weight in objective

E* : end of the day in scenario w

O

M : big constant
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min AYL Do wy+(1=X) ) E¥ (0)
a’xw’dw’ww7Ew pGP WEQ WGQ
subject to Y x5, =1 Vp e P, Yw € () (1)
ceC
ap +wy + sy + 5 =dj Vp e P, Vw € Q) (2)
ap, +wy + M2 -y  —x5 ) >ds VeeC, Vp1 >p2 € P, Vwe (3)
Ap, + W5, > ap, + Wy + s, Vp1 >ps € P, Yw € Q (4)
E® > d¥ Vp e P, Yw € () (5)
Ty, € 10,1} Vee C, Vp e P, Yw € () (6)
a, > 0 Vpe P (7)
wy, d >0 Vp € P, Yw € (8)
Binary and non-negativity constraints.
Variables : Parameters :
a;, . appointment time of patient p sy treatment time of patient p in scenario w
d; : discharge time of patient p in scenario w t, : treatment time of patient p in scenario w
w, @ waiting time of patient p in scenario w A : weight in objective
E* : end of the day in scenario w M : big constant
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Intractability of this model

* Large scale MIP (large number of scenarios)
 Weak relaxation bound

Number of .
. Solve Time
Scenarios
1 1 sec
5 15 sec
10 1 min
20 3 min
50 15 min
100 10 h*
500 1000 h* (* Estimates)
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Outline of the presentation

* Decomposition Algorithm
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Decomposition

Appointment Times: a,

Chair Assignment: x_,
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Decomposition

MIP,
Optimal cost: f*
Variables X, A

Set appointment variables

Set chair variables

LP(X) MIP(A)
Cost of feasible solution: c,(A) _ Cost of feasible solution: d,(X)
Optimal cost: ¢, * >et Fha'r& Optimal cost: d,*
X appointment P " 7A
variables
4
LP(A,X)

Optimal cost: f(A,X)
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Decomposition

Set chair variables

LP(X)
Cost of feasible solution: c,(A)
Optimal cost: ¢, *

MIP,
Optimal cost: f*
Variables X, A

Set chair &
appointment
variables

\ 4

Set appointment variables

MIP(A)
Cost of feasible solution: d,(X)
Optimal cost: d,*

LP(A,X)
Optimal cost: f(A,X)
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Decomposition

Set chair variables

LP(X)
Cost of feasible solution: c,(A)
Optimal cost: ¢, *

MIP,
Optimal cost: f*
Variables X, A

Set chair &
appointment
variables

\ 4

Set appointment variables

MIP(A)
Cost of feasible solution: d,(X)
Optimal cost: d,*

LP(A,X)
Optimal cost: f(A,X)

Trick: X* “first available” is optimal

So MIP(A) can be solved quickly
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The Fix-Unfix Algorithm

Exit when a chair
assignment

is found twice

Input to the LP

>

LP(X)

Chair assignment created
with First Available Chair
algorithm

Starting point

C(ALX,)

/' \

C(A,X,) €= C(A,X,)

= >
apO

A

v

A*

Improvement: c(A,,X;) 2 ¢(A,,X,) = c(A,,X,)
Termination: We iterate until we find the same chair assignment twice

A >

Simply compute optimal
appointment times for chair
assignment X
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Results of the Algorithm

* |nstance with 1000 scenarios
e Runtimes < 4 sec
e Between 2 and 7 iterations before termination

End Of Day - Waiting Chart
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Generalized Jensen's Bound

General Idea: apply Jensen inequality to the objective function

Traditional Jensen’s Bound

min E pecla? > g min ¢ 2%
x¥ : Ax“=b ¥ Axw=b
Ywe)  wef we

Original
Scenarios

LLLLLLLILL)

Aggregate
Scenario

3
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Generalized Jensen's Bound

General Idea: apply Jensen inequality to the objective function

Traditional Jensen’s Bound

min E pecla? > g min
x¥ : Ax“=b Wi Azw= b
Ywe)  wef we

Original
Scenarios

Aggregate
Scenario

\J
:
|

Generalized Jensen’s Bound

min ca? > Z p(G¥) min c'a¥
¥+ Az9=b ¥ Az® =b
YweQ)  we i€[1,k]| YweG;

where {G7 ... Gy} is a partition of ()

Original
Scenarios

Aggregate
Scenarios
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Comparison of the FUn Heuristic &

Jensen's bound

* Instance with 1000 scenarios
* Jensen’s bound computed with 20 groups of 50 scenarios

Trade-off between Wait Time and Length of Day

690
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Generalized Jensen’s Bound: An

iImprovement

General Idea: Waiting is high due to variability of the scenarios

Original
Scenarios
A | R |
| | |
Aggregate
Scenarios

Weak Bound
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Generalized Jensen’s Bound: An

iImprovement

General Idea: Waiting is high due to variability of the scenarios

> We should order the scenarios by total treatment length before grouping

Original Original
Scenarios Scenarios
S | R | I | I )
|

\ ey ——C

)\ )\ J
| | | I 1
Aggregate Aggregate
Scenarios Scenarios

Weak Bound Good Bound
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Comparison of the Algorithm &

Jensen's bound

* Instance with 1000 scenarios
e Jensen’s bound with 5 and 20 groups of 50 scenarios (sorted method)

Trade-off between Wait Time and Length of Day
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Comparison of the Algorithm &

Jensen's bound

* Performance ratio obj(Algo) - LB
LB

= 10%

Objective values of algorithm and lower bounds

I
500 % = O
% % u
u
8 400 % % [ -
S % % [
) m
g 300 % K u Ag=1
.3 % . Xg=20 (sorted
= % 8=20 ( )
o y

200 g g g B FUN Algorithm

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
lambda

33



Outline of the presentation

e Future Research
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Future Work

* Theoretical Work:
— Understand why the Fix-Unfix algorithm works so well

— Can this algorithm be successfully applied to some famous
problems?

— Merge scheduling phases 1 and 2 in a single optimization
model

e Towards an implementation at the Cancer Center:

— Define general rules/guidelines to help the phase 1
scheduling process

— Find easy-to-implement good sequences: Longest
(Shortest) Processing Time First, Shortest Variance First...
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CHEPS and the HEPS Master’s

Program

e CHEPS: The Center for Healthcare Engineering
and Patient Safety

 HEPS: Industrial and Operations Engineering (IOE)
Master’s Concentration in Healthcare Engineering
and Patient Safety offered by CHEPS

 CHEPS and HEPS offer unique multidisciplinary
teams from engineering, medicine, public health, §
nursing, and more collaborating with healthcare
professionals to better provide and care for
patients

 For more information, contact Amy Cohn at
amycohn@umich.edu or visit the CHEPS website
at: https://www.cheps.engin.umich.edu

v CENTER FOR
e 4 HEALTHCARE ENGINEERING & PATIENT SAFETY

UNIVERSITY OF MICHIGAN
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