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Motivations	
  

•  Current	
  state:	
  	
  
Average	
  waiOng	
  Ome	
  from	
  arrival	
  to	
  infusion	
  area	
  to	
  

beginning	
  of	
  treatment	
  is	
  42	
  minutes	
  
	
  
•  Goal:	
  	
  

Generate	
  appointment	
  schedules	
  that	
  reduce	
  paOent	
  
waiOng	
  Omes	
  and	
  total	
  length	
  of	
  day	
  of	
  operaOons	
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Outline	
  of	
  the	
  presentation	
  

•  DescripOon	
  of	
  the	
  problem	
  
•  StochasOc	
  OpOmizaOon	
  Model	
  
•  DecomposiOon	
  Algorithm	
  
•  Future	
  Research	
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The	
  Scheduling	
  Process	
  
•  Phase	
  1:	
  Online	
  Scheduling	
  (Day-­‐15	
  to	
  Day-­‐2)	
  

–  PaOent/Physician	
  calls	
  to	
  schedule	
  an	
  appointment	
  
–  Scheduler	
  assigns	
  paOent	
  to	
  a	
  day	
  and	
  a	
  slot	
  
–  Scheduler	
  gives	
  approximate	
  appointment	
  Ome	
  

•  Phase	
  2:	
  Fine-­‐Tuning	
  Op8miza8on	
  (Day-­‐2)	
  
–  Once	
  the	
  list	
  for	
  a	
  day	
  is	
  full,	
  we	
  set	
  final	
  appointment	
  Omes	
  
–  We	
  preserve	
  paOents	
  sequence	
  so	
  that	
  final	
  Omes	
  are	
  close	
  to	
  
original	
  esOmates	
  

–  We	
  opOmize	
  appointment	
  Omes	
  to	
  minimize	
  paOent	
  waiOng	
  
and	
  staff	
  overOme	
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Assumptions	
  

•  12	
  paOents	
  have	
  to	
  be	
  scheduled	
  (according	
  to	
  a	
  given	
  sequence)	
  
–  Appointment	
  Ome	
  
–  Chair	
  assignment	
  

•  3	
  chairs	
  are	
  available	
  (infusion	
  pod)	
  
•  1	
  nurse	
  is	
  responsible	
  for	
  the	
  paOents	
  assigned	
  to	
  those	
  3	
  chairs	
  
•  We	
  assume	
  that	
  paOents	
  arrive	
  on	
  Ome	
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Patient	
  timeline	
  

•  Treatment	
  tp,	
  ω	
  and	
  preparaOon	
  Omes	
  sp,	
  ω	
  are	
  random	
  parameters	
  
•  From	
  historical	
  data	
  analysis	
  we	
  divide	
  paOents	
  in	
  5	
  types	
  
•  Each	
  type	
  has	
  specific	
  distribuOons	
  	
  

ap	
  
chair	
  &	
  nurse	
  
availability	
  

wp,ω	
  

dp,	
  ω	
  

tp,	
  ω	
  

nurse	
  done	
  
prepping	
  paOent	
  

sp,	
  ω	
  

WaiOng	
   PreparaOon	
   Treatment	
  
Discharge	
  
Time	
  

Appointment	
  	
  
Time	
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DeAinition	
  of	
  Scenarios	
  
•  How	
  to	
  construct	
  a	
  scenario	
  ω:	
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Type	
  1	
  

Type	
  2	
  

Type	
  2	
  

Type	
  1	
  

(t1,	
  ω	
  ;	
  s1,	
  ω)	
  

(t2,	
  ω	
  ;	
  s2,	
  ω)	
  

(t3,	
  ω	
  ;	
  s3,	
  ω)	
  

(t4,	
  ω	
  ;	
  s4,	
  ω)	
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  ω	
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Overview	
  of	
  the	
  model	
  
First	
  Stage	
  Decision:	
  
Appointment	
  Times:	
  ap	
  
	
  

Second	
  Stage	
  Decision:	
  
Chair	
  Assignment:	
  xωpc	
  
	
  

Other	
  Variables:	
  
WaiOng	
  Time:	
  wω

p	
  

End	
  of	
  Day:	
  Eω	
  
Discharge	
  Time:	
  dωp	
  
	
  
	
  

	
  
	
  
	
  
	
  

	
  
≥0	
  
	
  
	
  

1	
  iff	
  paOent	
  p	
  is	
  assigned	
  to	
  
chair	
  c	
  in	
  scenario	
  ω	
  

	
  
≥0	
  
≥0	
  
≥0	
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Title : Stochastic model for scheduling appointments at the infusion center

Sets :

P : patients to schedule (already ordered)
C : chairs (One pod of 3 chairs only in this model)
⌦ : set of scenarios

Parameters :

t

!
p : treatment time of patient p (including discharge nurse time)
K : maximum hours of operations
sp : mean of preparation time of patient p by the nurse.
p

! : probability of scenario !

� : weight in the objective for Pareto border
M : big constant

Variables :

xpc : binary, assigns patient p to chair c
ap : appointment time of patient p
d

!
p : discharge time of patient p in scenario !

w

!
p : waiting time of patient p in scenario !

E

! : end of the day in scenario !

1

12	
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• (0): Minimize a linear combination of the total expected waiting time and the expected end of the
day

• (1): Each patient is assigned to exactly one infusion chair

• (2): Value of the discharge time of patient p in scenario !

• (3): Free chair constraint - A patient can sit in a chair only if every previously sequenced patients
assigned to this chair has been discharged.

• (4): Available nurse constraint - A patient can sit in a chair if the nurse has finished preparing all
previously sequenced patients, not necessarily in the same chair. Note that we assume that one
nurse only is working on this pod of 3 chairs.

• (5): Lower bound on the end of the day in each scenario.

• (6� 8): Binary and non-negativity constraints for variables.

Solving this model on an instance with 12 patients led to the following computational times: 1 second
for 5 scenarios, 5 seconds for 10 scenarios, 2 minutes for 20 scenarios and 1h for 40 scenarios. At this
rate, it is clear that (even for a fixed sequence of patients) a direct approach to solving this model is not
viable for 1000 scenarios. We proposed to use a special structure of this scheduling problem
to design a heuristic.

3.3.3 Heuristic Approach:

The key idea is, once again, to assume that some variables are known and fixed:

• Suppose that the assignment of patient to chair x!

pc

are known for each scenario, then the model
does not have binary variables anymore and is therefore very easy to solve.

• Now, suppose on the opposite that the appointment time a
p

are know (first stage decision. Then the
model can be solved indepedently for each scenario since we don’t have any first decision variables
linking the scenario all together. In fact, one can prove that the very simple heuristic we called
First available chair that assigns patients to the first available chair in each scenario is optimal.
So in that case too, the problem can be solved quickly

The algorithm is represented in Figure 5 and proceeds as follow:

• Initialization: Start by setting the appointment time A0 to 0 for all patients which means they
all arrive at the beginning of the day and construct the first available chair assignment X0.

• Typical iteration: Given a chair assignement X, solve LP (X) to get an optimal solution A (and
waiting times W ) then use those create the next first available chair assignment.

• Termination criterion: When we visit a first available chair assignment X that we previously
visited, terminate and return the current pair (A,X).
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Variables	
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Gate Assignment Download Scheduling Patient Scheduling

Source of Departure and Availability of Treatment times
uncertainty Arrival times Ground Stations
Random Objective coe�cients Binary tree Sampling from continuous

Parameters from historical data distributions
Nature of Model MIP Large-scale LP Large-scale MIP
Nature of Model Network Flow Multi-stage 2-stage MIP (Continuous 1st stage,

Stochastic LP Mixed-Integer 2nd stage)
Approximation N/A Rolling Horizon & Decomposition &

Ideas N/A Reset Points Heuristic Algorithm
Challenges and Forecasting Cost Compute Upper Bound Guaranty heuristic performance,
Future Work Coe�cients on Approximation Study sampling

Table 1: Summary of characteristics and methods developped for the 3 projects

4 Intellectual Merit and Broader Impacts

The field of stochastic scheduling, at the intersection of the stochastic optimization and scheduling
research areas, has been widely studied and numerous methods to model and solve those problems have
been proposed. However, given the tremendous complexity of some scheduling problems arising in the
industry, there is still a need for ad hoc algorithms making it possible to compute good or optimal
solutions to those problems. Our work, based on e�cient modeling and decomposition algorithms has a
real potential to benefit the academic community. Our research is conducted in close partnership with
industry professionals (Southwest) and other departments of the University (Aerospace, hospital) and is
a perfect fit to involve students from all level and background in engaging projects.

Besides its intelectual benefits, our research has a really practical component and the potential to
make a di↵erence in various industry sectors. Better scheduling in Airline, Healthcare and Aerospace
can impact society in numerous ways:

• More robust airline schedules can improve overall e�ciency and reducing costs for airline companies.

• Reducing patient wait times and total number of operations needed to treate a group of patients
allows hospitals to schedule more visits per day and improves quality of care and safety.

• Increasing satellite missions’ e�ciency will lead to more data collected over the planning horizon,
better energy management and a more fair repartition of resources amongst di↵erent satellites.

Resources Needed

I am working with my advisor Pr. Amy Cohn, as well as a team of undergraduate students participat-
ing in some of my interest projects. Those research projects come from partnerships with Southwest
Airlines, the UMHS Cancer Canter and the UM Aerospace Department and those institutions provide
us professional insight as well as large historical datasets that we use to build accurate models. We
expect to complete our research goals in 3 years and travel to conferences during that time to present
intermediate results from our research.

s!
p

: treatment time of patient p in scenario !
t!
p

: treatment time of patient p in scenario !
� : weight in objective
M : big constant
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• (0): Minimize a linear combination of the total expected waiting time and the expected end of the
day

• (1): Each patient is assigned to exactly one infusion chair

• (2): Value of the discharge time of patient p in scenario !

• (3): Free chair constraint - A patient can sit in a chair only if every previously sequenced patients
assigned to this chair has been discharged.

• (4): Available nurse constraint - A patient can sit in a chair if the nurse has finished preparing all
previously sequenced patients, not necessarily in the same chair. Note that we assume that one
nurse only is working on this pod of 3 chairs.

• (5): Lower bound on the end of the day in each scenario.

• (6� 8): Binary and non-negativity constraints for variables.

Solving this model on an instance with 12 patients led to the following computational times: 1 second
for 5 scenarios, 5 seconds for 10 scenarios, 2 minutes for 20 scenarios and 1h for 40 scenarios. At this
rate, it is clear that (even for a fixed sequence of patients) a direct approach to solving this model is not
viable for 1000 scenarios. We proposed to use a special structure of this scheduling problem
to design a heuristic.

3.3.3 Heuristic Approach:

The key idea is, once again, to assume that some variables are known and fixed:

• Suppose that the assignment of patient to chair x!

pc

are known for each scenario, then the model
does not have binary variables anymore and is therefore very easy to solve.

• Now, suppose on the opposite that the appointment time a
p

are know (first stage decision. Then the
model can be solved indepedently for each scenario since we don’t have any first decision variables
linking the scenario all together. In fact, one can prove that the very simple heuristic we called
First available chair that assigns patients to the first available chair in each scenario is optimal.
So in that case too, the problem can be solved quickly

The algorithm is represented in Figure 5 and proceeds as follow:

• Initialization: Start by setting the appointment time A0 to 0 for all patients which means they
all arrive at the beginning of the day and construct the first available chair assignment X0.

• Typical iteration: Given a chair assignement X, solve LP (X) to get an optimal solution A (and
waiting times W ) then use those create the next first available chair assignment.

• Termination criterion: When we visit a first available chair assignment X that we previously
visited, terminate and return the current pair (A,X).
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Table 1: Summary of characteristics and methods developped for the 3 projects

4 Intellectual Merit and Broader Impacts

The field of stochastic scheduling, at the intersection of the stochastic optimization and scheduling
research areas, has been widely studied and numerous methods to model and solve those problems have
been proposed. However, given the tremendous complexity of some scheduling problems arising in the
industry, there is still a need for ad hoc algorithms making it possible to compute good or optimal
solutions to those problems. Our work, based on e�cient modeling and decomposition algorithms has a
real potential to benefit the academic community. Our research is conducted in close partnership with
industry professionals (Southwest) and other departments of the University (Aerospace, hospital) and is
a perfect fit to involve students from all level and background in engaging projects.

Besides its intelectual benefits, our research has a really practical component and the potential to
make a di↵erence in various industry sectors. Better scheduling in Airline, Healthcare and Aerospace
can impact society in numerous ways:

• More robust airline schedules can improve overall e�ciency and reducing costs for airline companies.

• Reducing patient wait times and total number of operations needed to treate a group of patients
allows hospitals to schedule more visits per day and improves quality of care and safety.

• Increasing satellite missions’ e�ciency will lead to more data collected over the planning horizon,
better energy management and a more fair repartition of resources amongst di↵erent satellites.

Resources Needed

I am working with my advisor Pr. Amy Cohn, as well as a team of undergraduate students participat-
ing in some of my interest projects. Those research projects come from partnerships with Southwest
Airlines, the UMHS Cancer Canter and the UM Aerospace Department and those institutions provide
us professional insight as well as large historical datasets that we use to build accurate models. We
expect to complete our research goals in 3 years and travel to conferences during that time to present
intermediate results from our research.
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Title : Stochastic model for scheduling appointments at the infusion center

Sets :

P : patients to schedule (already ordered)
C : chairs (One pod of 3 chairs only in this model)
⌦ : set of scenarios

Parameters :
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p : treatment time of patient p (including discharge nurse time)
K : maximum hours of operations
sp : mean of preparation time of patient p by the nurse.
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� : weight in the objective for Pareto border
M : big constant

Variables :

xpc : binary, assigns patient p to chair c
ap : appointment time of patient p
d

!
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E

! : end of the day in scenario !
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• (0): Minimize a linear combination of the total expected waiting time and the expected end of the
day

• (1): Each patient is assigned to exactly one infusion chair

• (2): Value of the discharge time of patient p in scenario !

• (3): Free chair constraint - A patient can sit in a chair only if every previously sequenced patients
assigned to this chair has been discharged.

• (4): Available nurse constraint - A patient can sit in a chair if the nurse has finished preparing all
previously sequenced patients, not necessarily in the same chair. Note that we assume that one
nurse only is working on this pod of 3 chairs.

• (5): Lower bound on the end of the day in each scenario.

• (6� 8): Binary and non-negativity constraints for variables.

Solving this model on an instance with 12 patients led to the following computational times: 1 second
for 5 scenarios, 5 seconds for 10 scenarios, 2 minutes for 20 scenarios and 1h for 40 scenarios. At this
rate, it is clear that (even for a fixed sequence of patients) a direct approach to solving this model is not
viable for 1000 scenarios. We proposed to use a special structure of this scheduling problem
to design a heuristic.

3.3.3 Heuristic Approach:

The key idea is, once again, to assume that some variables are known and fixed:

• Suppose that the assignment of patient to chair x!

pc

are known for each scenario, then the model
does not have binary variables anymore and is therefore very easy to solve.

• Now, suppose on the opposite that the appointment time a
p

are know (first stage decision. Then the
model can be solved indepedently for each scenario since we don’t have any first decision variables
linking the scenario all together. In fact, one can prove that the very simple heuristic we called
First available chair that assigns patients to the first available chair in each scenario is optimal.
So in that case too, the problem can be solved quickly

The algorithm is represented in Figure 5 and proceeds as follow:

• Initialization: Start by setting the appointment time A0 to 0 for all patients which means they
all arrive at the beginning of the day and construct the first available chair assignment X0.

• Typical iteration: Given a chair assignement X, solve LP (X) to get an optimal solution A (and
waiting times W ) then use those create the next first available chair assignment.

• Termination criterion: When we visit a first available chair assignment X that we previously
visited, terminate and return the current pair (A,X).
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Gate Assignment Download Scheduling Patient Scheduling

Source of Departure and Availability of Treatment times
uncertainty Arrival times Ground Stations
Random Objective coe�cients Binary tree Sampling from continuous

Parameters from historical data distributions
Nature of Model MIP Large-scale LP Large-scale MIP
Nature of Model Network Flow Multi-stage 2-stage MIP (Continuous 1st stage,

Stochastic LP Mixed-Integer 2nd stage)
Approximation N/A Rolling Horizon & Decomposition &

Ideas N/A Reset Points Heuristic Algorithm
Challenges and Forecasting Cost Compute Upper Bound Guaranty heuristic performance,
Future Work Coe�cients on Approximation Study sampling

Table 1: Summary of characteristics and methods developped for the 3 projects

4 Intellectual Merit and Broader Impacts

The field of stochastic scheduling, at the intersection of the stochastic optimization and scheduling
research areas, has been widely studied and numerous methods to model and solve those problems have
been proposed. However, given the tremendous complexity of some scheduling problems arising in the
industry, there is still a need for ad hoc algorithms making it possible to compute good or optimal
solutions to those problems. Our work, based on e�cient modeling and decomposition algorithms has a
real potential to benefit the academic community. Our research is conducted in close partnership with
industry professionals (Southwest) and other departments of the University (Aerospace, hospital) and is
a perfect fit to involve students from all level and background in engaging projects.

Besides its intelectual benefits, our research has a really practical component and the potential to
make a di↵erence in various industry sectors. Better scheduling in Airline, Healthcare and Aerospace
can impact society in numerous ways:

• More robust airline schedules can improve overall e�ciency and reducing costs for airline companies.

• Reducing patient wait times and total number of operations needed to treate a group of patients
allows hospitals to schedule more visits per day and improves quality of care and safety.

• Increasing satellite missions’ e�ciency will lead to more data collected over the planning horizon,
better energy management and a more fair repartition of resources amongst di↵erent satellites.

Resources Needed

I am working with my advisor Pr. Amy Cohn, as well as a team of undergraduate students participat-
ing in some of my interest projects. Those research projects come from partnerships with Southwest
Airlines, the UMHS Cancer Canter and the UM Aerospace Department and those institutions provide
us professional insight as well as large historical datasets that we use to build accurate models. We
expect to complete our research goals in 3 years and travel to conferences during that time to present
intermediate results from our research.
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Title : Stochastic model for scheduling appointments at the infusion center

Sets :

P : patients to schedule (already ordered)
C : chairs (One pod of 3 chairs only in this model)
⌦ : set of scenarios

Parameters :

t

!
p : treatment time of patient p (including discharge nurse time)
K : maximum hours of operations
sp : mean of preparation time of patient p by the nurse.
p

! : probability of scenario !

� : weight in the objective for Pareto border
M : big constant

Variables :

xpc : binary, assigns patient p to chair c
ap : appointment time of patient p
d

!
p : discharge time of patient p in scenario !

w

!
p : waiting time of patient p in scenario !

E

! : end of the day in scenario !

1
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• (0): Minimize a linear combination of the total expected waiting time and the expected end of the
day

• (1): Each patient is assigned to exactly one infusion chair

• (2): Value of the discharge time of patient p in scenario !

• (3): Free chair constraint - A patient can sit in a chair only if every previously sequenced patients
assigned to this chair has been discharged.

• (4): Available nurse constraint - A patient can sit in a chair if the nurse has finished preparing all
previously sequenced patients, not necessarily in the same chair. Note that we assume that one
nurse only is working on this pod of 3 chairs.

• (5): Lower bound on the end of the day in each scenario.

• (6� 8): Binary and non-negativity constraints for variables.

Solving this model on an instance with 12 patients led to the following computational times: 1 second
for 5 scenarios, 5 seconds for 10 scenarios, 2 minutes for 20 scenarios and 1h for 40 scenarios. At this
rate, it is clear that (even for a fixed sequence of patients) a direct approach to solving this model is not
viable for 1000 scenarios. We proposed to use a special structure of this scheduling problem
to design a heuristic.

3.3.3 Heuristic Approach:

The key idea is, once again, to assume that some variables are known and fixed:

• Suppose that the assignment of patient to chair x!

pc

are known for each scenario, then the model
does not have binary variables anymore and is therefore very easy to solve.

• Now, suppose on the opposite that the appointment time a
p

are know (first stage decision. Then the
model can be solved indepedently for each scenario since we don’t have any first decision variables
linking the scenario all together. In fact, one can prove that the very simple heuristic we called
First available chair that assigns patients to the first available chair in each scenario is optimal.
So in that case too, the problem can be solved quickly

The algorithm is represented in Figure 5 and proceeds as follow:

• Initialization: Start by setting the appointment time A0 to 0 for all patients which means they
all arrive at the beginning of the day and construct the first available chair assignment X0.

• Typical iteration: Given a chair assignement X, solve LP (X) to get an optimal solution A (and
waiting times W ) then use those create the next first available chair assignment.

• Termination criterion: When we visit a first available chair assignment X that we previously
visited, terminate and return the current pair (A,X).
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Gate Assignment Download Scheduling Patient Scheduling

Source of Departure and Availability of Treatment times
uncertainty Arrival times Ground Stations
Random Objective coe�cients Binary tree Sampling from continuous

Parameters from historical data distributions
Nature of Model MIP Large-scale LP Large-scale MIP
Nature of Model Network Flow Multi-stage 2-stage MIP (Continuous 1st stage,

Stochastic LP Mixed-Integer 2nd stage)
Approximation N/A Rolling Horizon & Decomposition &

Ideas N/A Reset Points Heuristic Algorithm
Challenges and Forecasting Cost Compute Upper Bound Guaranty heuristic performance,
Future Work Coe�cients on Approximation Study sampling

Table 1: Summary of characteristics and methods developped for the 3 projects

4 Intellectual Merit and Broader Impacts

The field of stochastic scheduling, at the intersection of the stochastic optimization and scheduling
research areas, has been widely studied and numerous methods to model and solve those problems have
been proposed. However, given the tremendous complexity of some scheduling problems arising in the
industry, there is still a need for ad hoc algorithms making it possible to compute good or optimal
solutions to those problems. Our work, based on e�cient modeling and decomposition algorithms has a
real potential to benefit the academic community. Our research is conducted in close partnership with
industry professionals (Southwest) and other departments of the University (Aerospace, hospital) and is
a perfect fit to involve students from all level and background in engaging projects.

Besides its intelectual benefits, our research has a really practical component and the potential to
make a di↵erence in various industry sectors. Better scheduling in Airline, Healthcare and Aerospace
can impact society in numerous ways:

• More robust airline schedules can improve overall e�ciency and reducing costs for airline companies.

• Reducing patient wait times and total number of operations needed to treate a group of patients
allows hospitals to schedule more visits per day and improves quality of care and safety.

• Increasing satellite missions’ e�ciency will lead to more data collected over the planning horizon,
better energy management and a more fair repartition of resources amongst di↵erent satellites.

Resources Needed

I am working with my advisor Pr. Amy Cohn, as well as a team of undergraduate students participat-
ing in some of my interest projects. Those research projects come from partnerships with Southwest
Airlines, the UMHS Cancer Canter and the UM Aerospace Department and those institutions provide
us professional insight as well as large historical datasets that we use to build accurate models. We
expect to complete our research goals in 3 years and travel to conferences during that time to present
intermediate results from our research.

s!
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: treatment time of patient p in scenario !
t!
p

: treatment time of patient p in scenario !
� : weight in objective
M : big constant
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Title : Stochastic model for scheduling appointments at the infusion center

Sets :

P : patients to schedule (already ordered)
C : chairs (One pod of 3 chairs only in this model)
⌦ : set of scenarios

Parameters :

t

!
p : treatment time of patient p (including discharge nurse time)
K : maximum hours of operations
sp : mean of preparation time of patient p by the nurse.
p

! : probability of scenario !

� : weight in the objective for Pareto border
M : big constant

Variables :

xpc : binary, assigns patient p to chair c
ap : appointment time of patient p
d

!
p : discharge time of patient p in scenario !

w

!
p : waiting time of patient p in scenario !

E

! : end of the day in scenario !

1
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• (0): Minimize a linear combination of the total expected waiting time and the expected end of the
day

• (1): Each patient is assigned to exactly one infusion chair

• (2): Value of the discharge time of patient p in scenario !

• (3): Free chair constraint - A patient can sit in a chair only if every previously sequenced patients
assigned to this chair has been discharged.

• (4): Available nurse constraint - A patient can sit in a chair if the nurse has finished preparing all
previously sequenced patients, not necessarily in the same chair. Note that we assume that one
nurse only is working on this pod of 3 chairs.

• (5): Lower bound on the end of the day in each scenario.

• (6� 8): Binary and non-negativity constraints for variables.

Solving this model on an instance with 12 patients led to the following computational times: 1 second
for 5 scenarios, 5 seconds for 10 scenarios, 2 minutes for 20 scenarios and 1h for 40 scenarios. At this
rate, it is clear that (even for a fixed sequence of patients) a direct approach to solving this model is not
viable for 1000 scenarios. We proposed to use a special structure of this scheduling problem
to design a heuristic.

3.3.3 Heuristic Approach:

The key idea is, once again, to assume that some variables are known and fixed:

• Suppose that the assignment of patient to chair x!

pc

are known for each scenario, then the model
does not have binary variables anymore and is therefore very easy to solve.

• Now, suppose on the opposite that the appointment time a
p

are know (first stage decision. Then the
model can be solved indepedently for each scenario since we don’t have any first decision variables
linking the scenario all together. In fact, one can prove that the very simple heuristic we called
First available chair that assigns patients to the first available chair in each scenario is optimal.
So in that case too, the problem can be solved quickly

The algorithm is represented in Figure 5 and proceeds as follow:

• Initialization: Start by setting the appointment time A0 to 0 for all patients which means they
all arrive at the beginning of the day and construct the first available chair assignment X0.

• Typical iteration: Given a chair assignement X, solve LP (X) to get an optimal solution A (and
waiting times W ) then use those create the next first available chair assignment.

• Termination criterion: When we visit a first available chair assignment X that we previously
visited, terminate and return the current pair (A,X).
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Gate Assignment Download Scheduling Patient Scheduling

Source of Departure and Availability of Treatment times
uncertainty Arrival times Ground Stations
Random Objective coe�cients Binary tree Sampling from continuous

Parameters from historical data distributions
Nature of Model MIP Large-scale LP Large-scale MIP
Nature of Model Network Flow Multi-stage 2-stage MIP (Continuous 1st stage,

Stochastic LP Mixed-Integer 2nd stage)
Approximation N/A Rolling Horizon & Decomposition &

Ideas N/A Reset Points Heuristic Algorithm
Challenges and Forecasting Cost Compute Upper Bound Guaranty heuristic performance,
Future Work Coe�cients on Approximation Study sampling

Table 1: Summary of characteristics and methods developped for the 3 projects

4 Intellectual Merit and Broader Impacts

The field of stochastic scheduling, at the intersection of the stochastic optimization and scheduling
research areas, has been widely studied and numerous methods to model and solve those problems have
been proposed. However, given the tremendous complexity of some scheduling problems arising in the
industry, there is still a need for ad hoc algorithms making it possible to compute good or optimal
solutions to those problems. Our work, based on e�cient modeling and decomposition algorithms has a
real potential to benefit the academic community. Our research is conducted in close partnership with
industry professionals (Southwest) and other departments of the University (Aerospace, hospital) and is
a perfect fit to involve students from all level and background in engaging projects.

Besides its intelectual benefits, our research has a really practical component and the potential to
make a di↵erence in various industry sectors. Better scheduling in Airline, Healthcare and Aerospace
can impact society in numerous ways:

• More robust airline schedules can improve overall e�ciency and reducing costs for airline companies.

• Reducing patient wait times and total number of operations needed to treate a group of patients
allows hospitals to schedule more visits per day and improves quality of care and safety.

• Increasing satellite missions’ e�ciency will lead to more data collected over the planning horizon,
better energy management and a more fair repartition of resources amongst di↵erent satellites.

Resources Needed

I am working with my advisor Pr. Amy Cohn, as well as a team of undergraduate students participat-
ing in some of my interest projects. Those research projects come from partnerships with Southwest
Airlines, the UMHS Cancer Canter and the UM Aerospace Department and those institutions provide
us professional insight as well as large historical datasets that we use to build accurate models. We
expect to complete our research goals in 3 years and travel to conferences during that time to present
intermediate results from our research.
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t!
p

: treatment time of patient p in scenario !
� : weight in objective
M : big constant
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Title : Stochastic model for scheduling appointments at the infusion center

Sets :

P : patients to schedule (already ordered)
C : chairs (One pod of 3 chairs only in this model)
⌦ : set of scenarios

Parameters :

t

!
p : treatment time of patient p (including discharge nurse time)
K : maximum hours of operations
sp : mean of preparation time of patient p by the nurse.
p

! : probability of scenario !

� : weight in the objective for Pareto border
M : big constant

Variables :

xpc : binary, assigns patient p to chair c
ap : appointment time of patient p
d

!
p : discharge time of patient p in scenario !

w

!
p : waiting time of patient p in scenario !

E

! : end of the day in scenario !

1
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• (0): Minimize a linear combination of the total expected waiting time and the expected end of the
day

• (1): Each patient is assigned to exactly one infusion chair

• (2): Value of the discharge time of patient p in scenario !

• (3): Free chair constraint - A patient can sit in a chair only if every previously sequenced patients
assigned to this chair has been discharged.

• (4): Available nurse constraint - A patient can sit in a chair if the nurse has finished preparing all
previously sequenced patients, not necessarily in the same chair. Note that we assume that one
nurse only is working on this pod of 3 chairs.

• (5): Lower bound on the end of the day in each scenario.

• (6� 8): Binary and non-negativity constraints for variables.

Solving this model on an instance with 12 patients led to the following computational times: 1 second
for 5 scenarios, 5 seconds for 10 scenarios, 2 minutes for 20 scenarios and 1h for 40 scenarios. At this
rate, it is clear that (even for a fixed sequence of patients) a direct approach to solving this model is not
viable for 1000 scenarios. We proposed to use a special structure of this scheduling problem
to design a heuristic.

3.3.3 Heuristic Approach:

The key idea is, once again, to assume that some variables are known and fixed:

• Suppose that the assignment of patient to chair x!

pc

are known for each scenario, then the model
does not have binary variables anymore and is therefore very easy to solve.

• Now, suppose on the opposite that the appointment time a
p

are know (first stage decision. Then the
model can be solved indepedently for each scenario since we don’t have any first decision variables
linking the scenario all together. In fact, one can prove that the very simple heuristic we called
First available chair that assigns patients to the first available chair in each scenario is optimal.
So in that case too, the problem can be solved quickly

The algorithm is represented in Figure 5 and proceeds as follow:

• Initialization: Start by setting the appointment time A0 to 0 for all patients which means they
all arrive at the beginning of the day and construct the first available chair assignment X0.

• Typical iteration: Given a chair assignement X, solve LP (X) to get an optimal solution A (and
waiting times W ) then use those create the next first available chair assignment.

• Termination criterion: When we visit a first available chair assignment X that we previously
visited, terminate and return the current pair (A,X).
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Gate Assignment Download Scheduling Patient Scheduling

Source of Departure and Availability of Treatment times
uncertainty Arrival times Ground Stations
Random Objective coe�cients Binary tree Sampling from continuous

Parameters from historical data distributions
Nature of Model MIP Large-scale LP Large-scale MIP
Nature of Model Network Flow Multi-stage 2-stage MIP (Continuous 1st stage,

Stochastic LP Mixed-Integer 2nd stage)
Approximation N/A Rolling Horizon & Decomposition &

Ideas N/A Reset Points Heuristic Algorithm
Challenges and Forecasting Cost Compute Upper Bound Guaranty heuristic performance,
Future Work Coe�cients on Approximation Study sampling

Table 1: Summary of characteristics and methods developped for the 3 projects

4 Intellectual Merit and Broader Impacts

The field of stochastic scheduling, at the intersection of the stochastic optimization and scheduling
research areas, has been widely studied and numerous methods to model and solve those problems have
been proposed. However, given the tremendous complexity of some scheduling problems arising in the
industry, there is still a need for ad hoc algorithms making it possible to compute good or optimal
solutions to those problems. Our work, based on e�cient modeling and decomposition algorithms has a
real potential to benefit the academic community. Our research is conducted in close partnership with
industry professionals (Southwest) and other departments of the University (Aerospace, hospital) and is
a perfect fit to involve students from all level and background in engaging projects.

Besides its intelectual benefits, our research has a really practical component and the potential to
make a di↵erence in various industry sectors. Better scheduling in Airline, Healthcare and Aerospace
can impact society in numerous ways:

• More robust airline schedules can improve overall e�ciency and reducing costs for airline companies.

• Reducing patient wait times and total number of operations needed to treate a group of patients
allows hospitals to schedule more visits per day and improves quality of care and safety.

• Increasing satellite missions’ e�ciency will lead to more data collected over the planning horizon,
better energy management and a more fair repartition of resources amongst di↵erent satellites.

Resources Needed

I am working with my advisor Pr. Amy Cohn, as well as a team of undergraduate students participat-
ing in some of my interest projects. Those research projects come from partnerships with Southwest
Airlines, the UMHS Cancer Canter and the UM Aerospace Department and those institutions provide
us professional insight as well as large historical datasets that we use to build accurate models. We
expect to complete our research goals in 3 years and travel to conferences during that time to present
intermediate results from our research.

s!
p

: treatment time of patient p in scenario !
t!
p

: treatment time of patient p in scenario !
� : weight in objective
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Title : Stochastic model for scheduling appointments at the infusion center

Sets :

P : patients to schedule (already ordered)
C : chairs (One pod of 3 chairs only in this model)
⌦ : set of scenarios

Parameters :

t

!
p : treatment time of patient p (including discharge nurse time)
K : maximum hours of operations
sp : mean of preparation time of patient p by the nurse.
p

! : probability of scenario !

� : weight in the objective for Pareto border
M : big constant

Variables :

xpc : binary, assigns patient p to chair c
ap : appointment time of patient p
d

!
p : discharge time of patient p in scenario !

w

!
p : waiting time of patient p in scenario !

E

! : end of the day in scenario !
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• (0): Minimize a linear combination of the total expected waiting time and the expected end of the
day

• (1): Each patient is assigned to exactly one infusion chair

• (2): Value of the discharge time of patient p in scenario !

• (3): Free chair constraint - A patient can sit in a chair only if every previously sequenced patients
assigned to this chair has been discharged.

• (4): Available nurse constraint - A patient can sit in a chair if the nurse has finished preparing all
previously sequenced patients, not necessarily in the same chair. Note that we assume that one
nurse only is working on this pod of 3 chairs.

• (5): Lower bound on the end of the day in each scenario.

• (6� 8): Binary and non-negativity constraints for variables.

Solving this model on an instance with 12 patients led to the following computational times: 1 second
for 5 scenarios, 5 seconds for 10 scenarios, 2 minutes for 20 scenarios and 1h for 40 scenarios. At this
rate, it is clear that (even for a fixed sequence of patients) a direct approach to solving this model is not
viable for 1000 scenarios. We proposed to use a special structure of this scheduling problem
to design a heuristic.

3.3.3 Heuristic Approach:

The key idea is, once again, to assume that some variables are known and fixed:

• Suppose that the assignment of patient to chair x!

pc

are known for each scenario, then the model
does not have binary variables anymore and is therefore very easy to solve.

• Now, suppose on the opposite that the appointment time a
p

are know (first stage decision. Then the
model can be solved indepedently for each scenario since we don’t have any first decision variables
linking the scenario all together. In fact, one can prove that the very simple heuristic we called
First available chair that assigns patients to the first available chair in each scenario is optimal.
So in that case too, the problem can be solved quickly

The algorithm is represented in Figure 5 and proceeds as follow:

• Initialization: Start by setting the appointment time A0 to 0 for all patients which means they
all arrive at the beginning of the day and construct the first available chair assignment X0.

• Typical iteration: Given a chair assignement X, solve LP (X) to get an optimal solution A (and
waiting times W ) then use those create the next first available chair assignment.

• Termination criterion: When we visit a first available chair assignment X that we previously
visited, terminate and return the current pair (A,X).
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Gate Assignment Download Scheduling Patient Scheduling

Source of Departure and Availability of Treatment times
uncertainty Arrival times Ground Stations
Random Objective coe�cients Binary tree Sampling from continuous

Parameters from historical data distributions
Nature of Model MIP Large-scale LP Large-scale MIP
Nature of Model Network Flow Multi-stage 2-stage MIP (Continuous 1st stage,

Stochastic LP Mixed-Integer 2nd stage)
Approximation N/A Rolling Horizon & Decomposition &

Ideas N/A Reset Points Heuristic Algorithm
Challenges and Forecasting Cost Compute Upper Bound Guaranty heuristic performance,
Future Work Coe�cients on Approximation Study sampling

Table 1: Summary of characteristics and methods developped for the 3 projects

4 Intellectual Merit and Broader Impacts

The field of stochastic scheduling, at the intersection of the stochastic optimization and scheduling
research areas, has been widely studied and numerous methods to model and solve those problems have
been proposed. However, given the tremendous complexity of some scheduling problems arising in the
industry, there is still a need for ad hoc algorithms making it possible to compute good or optimal
solutions to those problems. Our work, based on e�cient modeling and decomposition algorithms has a
real potential to benefit the academic community. Our research is conducted in close partnership with
industry professionals (Southwest) and other departments of the University (Aerospace, hospital) and is
a perfect fit to involve students from all level and background in engaging projects.

Besides its intelectual benefits, our research has a really practical component and the potential to
make a di↵erence in various industry sectors. Better scheduling in Airline, Healthcare and Aerospace
can impact society in numerous ways:

• More robust airline schedules can improve overall e�ciency and reducing costs for airline companies.

• Reducing patient wait times and total number of operations needed to treate a group of patients
allows hospitals to schedule more visits per day and improves quality of care and safety.

• Increasing satellite missions’ e�ciency will lead to more data collected over the planning horizon,
better energy management and a more fair repartition of resources amongst di↵erent satellites.

Resources Needed

I am working with my advisor Pr. Amy Cohn, as well as a team of undergraduate students participat-
ing in some of my interest projects. Those research projects come from partnerships with Southwest
Airlines, the UMHS Cancer Canter and the UM Aerospace Department and those institutions provide
us professional insight as well as large historical datasets that we use to build accurate models. We
expect to complete our research goals in 3 years and travel to conferences during that time to present
intermediate results from our research.
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  solved	
  quickly	
  

24	
  



The	
  Fix-­‐UnAix	
  Algorithm	
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Introduction

This document includes an MIP model that tries to minimize a linear combina-

tion of the total expected waiting time and the expected end of the day. We assume

that we have one pod and we want to schedule a number of patients throughout

one day.

Goal : Schedule the appointment times of a given number n (typically 12) of

patients that have already been sequenced using a predetermined sequencing rule,

for example LPT. We assume this for simplicity of our first model, but we might

develop another model that doesn’t use a predetermined sequencing rule.

Stochasticity : For each patient, we consider m (typically 3) possible treatment

times, each of which can happen with a given probability. For example patient 1

has a treatment time of 60 minutes with probability 0.2, 90 minutes with probabi-

lity 0.5 or 120 minutes with probability 0.3. We then create m

n

di↵erent scenarios.

Each scenario corresponds to a possible combination of those treatment times for

the patients.

Result : Appointment time and chair assignment for each patient to be sche-

duled on that day. The model also provides the expected waiting time for each

patient and the expected end of the day.

Sets :

P : set of patients for one day for one pod

1

TradiOonal	
  Jensen’s	
  Bound	
  
	
  

Original	
  
Scenarios	
  

Aggregate	
  
Scenario	
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Comparison	
  of	
  the	
  FUn	
  Heuristic	
  &	
  
Jensen’s	
  bound	
  

•  Instance	
  with	
  1000	
  scenarios	
  
•  Jensen’s	
  bound	
  computed	
  with	
  20	
  groups	
  of	
  50	
  scenarios	
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  Jensen’s	
  Bound:	
  An	
  
improvement	
  

General	
  Idea:	
  WaiOng	
  is	
  high	
  due	
  to	
  variability	
  of	
  the	
  scenarios	
  
	
  	
  
	
  We	
  should	
  order	
  the	
  scenarios	
  by	
  total	
  treatment	
  length	
  before	
  grouping	
  

Original	
  
Scenarios	
  

Aggregate	
  
Scenarios	
  

Original	
  
Scenarios	
  

Aggregate	
  
Scenarios	
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Comparison	
  of	
  the	
  Algorithm	
  &	
  
Jensen’s	
  bound	
  

•  Instance	
  with	
  1000	
  scenarios	
  
•  Jensen’s	
  bound	
  with	
  5	
  and	
  20	
  groups	
  of	
  50	
  scenarios	
  (sorted	
  method)	
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Future	
  Work	
  
•  Theore8cal	
  Work:	
  
–  Understand	
  why	
  the	
  Fix-­‐Unfix	
  algorithm	
  works	
  so	
  well	
  
–  Can	
  this	
  algorithm	
  be	
  successfully	
  applied	
  to	
  some	
  famous	
  
problems?	
  

– Merge	
  scheduling	
  phases	
  1	
  and	
  2	
  in	
  a	
  single	
  opOmizaOon	
  
model	
  

•  Towards	
  an	
  implementa8on	
  at	
  the	
  Cancer	
  Center:	
  
–  Define	
  general	
  rules/guidelines	
  to	
  help	
  the	
  phase	
  1	
  
scheduling	
  process	
  

–  Find	
  easy-­‐to-­‐implement	
  good	
  sequences:	
  Longest	
  
(Shortest)	
  Processing	
  Time	
  First,	
  Shortest	
  Variance	
  First...	
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CHEPS	
  and	
  the	
  HEPS	
  Master’s	
  
Program	
  

•  CHEPS:	
  The	
  Center	
  for	
  Healthcare	
  Engineering	
  
and	
  PaOent	
  Safety	
  

•  HEPS:	
  Industrial	
  and	
  OperaOons	
  Engineering	
  (IOE)	
  
Master’s	
  ConcentraOon	
  in	
  Healthcare	
  Engineering	
  
and	
  PaOent	
  Safety	
  offered	
  by	
  CHEPS	
  

•  CHEPS	
  and	
  HEPS	
  offer	
  unique	
  mulOdisciplinary	
  
teams	
  from	
  engineering,	
  medicine,	
  public	
  health,	
  
nursing,	
  and	
  more	
  collaboraOng	
  with	
  healthcare	
  
professionals	
  to	
  beBer	
  provide	
  and	
  care	
  for	
  
paOents	
  

•  For	
  more	
  informaOon,	
  contact	
  Amy	
  Cohn	
  at	
  
amycohn@umich.edu	
  or	
  visit	
  the	
  CHEPS	
  website	
  
at:	
  hBps://www.cheps.engin.umich.edu	
  	
  



Thank	
  you	
  
	
  

Jeremy	
  Castaing	
  
jctg@umich.edu	
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