Stochastic Optimization to Reduce Wait Times in an Outpatient Infusion Center

Jeremy Castaing
University of Michigan

Co-authors: Dr. Amy Cohn, Dr. Brian Denton

Our Collaborators

Research Team:

- Hassan Abbass
- Sarah Bach
- Vanessa Morales
- Matthew Rouhana
- Stephanie See

Contacts at the UM Cancer Center:

- Alon Weizer, Medical Director
- Louise Salamin, Nurse Manager
- Carolina Typaldos, Project Manager

Motivations

Current state:

Average waiting time from arrival to infusion area to beginning of treatment is 42 minutes

Goal:

Generate appointment schedules that reduce patient waiting times and total length of day of operations

Outline of the presentation

- Description of the problem
- Stochastic Optimization Model
- Decomposition Algorithm
- Future Research

Outline of the presentation

- Description of the problem
- Stochastic Optimization Model
- Decomposition Algorithm
- Future Research

The Scheduling Process

- Phase 1: Online Scheduling (Day-15 to Day-2)
 - Patient/Physician calls to schedule an appointment
 - Scheduler assigns patient to a day and a slot
 - Scheduler gives approximate appointment time
- Phase 2: Fine-Tuning Optimization (Day-2)
 - Once the list for a day is full, we set final appointment times
 - We preserve patients sequence so that final times are close to original estimates
 - We optimize appointment times to minimize patient waiting and staff overtime

Assumptions

- 12 patients have to be scheduled (according to a given sequence)
 - Appointment time
 - Chair assignment
- 3 chairs are available (infusion pod)
- 1 nurse is responsible for the patients assigned to those 3 chairs
- We assume that patients arrive on time

Patient timeline

- Treatment $t_{p, \omega}$ and preparation times $s_{p, \omega}$ are random parameters
- From historical data analysis we divide patients in 5 types
- Each type has specific distributions

Definition of Scenarios

How to construct a scenario ω:

Outline of the presentation

- Description of the problem
- Stochastic Optimization Model
- Decomposition Algorithm
- Future Research

Overview of the model

First Stage Decision:

Appointment Times: a_p Continuous ≥ 0

Second Stage Decision:

Chair Assignment: x^{ω}_{pc} Binary 1 iff patient p is assigned to

chair c in scenario ω

Other Variables:

Waiting Time: w_p^{ω} Continuous ≥ 0

End of Day: E^{ω} Continuous ≥ 0

Discharge Time: d_{p}^{ω} Continuous ≥ 0

$$\min_{a,x^{\omega},d^{\omega},w^{\omega},E^{\omega}} \quad \lambda \sum_{p \in P} \sum_{\omega \in \Omega} w_p^{\omega} + (1-\lambda) \sum_{\omega \in \Omega} E^{\omega}$$
 (0)

Objective: Trade-off between the total expected waiting time and the expected end of the day.

<u>Variables</u>:

 a_p : appointment time of patient p

 d_p^{ω} : discharge time of patient p in scenario ω w_p^{ω} : waiting time of patient p in scenario ω

 E^{ω} : end of the day in scenario ω

<u>Parameters:</u>

 s_p^{ω} : treatment time of patient p in scenario ω

 t_p^{ω} : treatment time of patient p in scenario ω

 λ : weight in objective

$$\min_{\substack{a, x^{\omega}, d^{\omega}, w^{\omega}, E^{\omega} \\ \text{subject to}}} \lambda \sum_{p \in P} \sum_{\omega \in \Omega} w_p^{\omega} + (1 - \lambda) \sum_{\omega \in \Omega} E^{\omega}$$

$$\sum_{c \in C} x_{pc}^{\omega} = 1$$

$$\forall p \in P, \forall \omega \in \Omega$$

$$(1)$$

Each patient is assigned to exactly one chair in each scenario.

<u>Variables</u>:

 a_p : appointment time of patient p

 d_p^{ω} : discharge time of patient p in scenario ω

 w_p^{ω} : waiting time of patient p in scenario ω

 E^{ω} : end of the day in scenario ω

Parameters:

 s_p^ω : treatment time of patient p in scenario ω t_p^ω : treatment time of patient p in scenario ω

 λ : weight in objective

$$\min_{\substack{a,x^{\omega},d^{\omega},w^{\omega},E^{\omega}\\ \text{subject to}}} \lambda \sum_{\substack{p \in P}} \sum_{\omega \in \Omega} w_p^{\omega} + (1-\lambda) \sum_{\omega \in \Omega} E^{\omega}$$

$$\sum_{\substack{c \in C\\ a_p + w_p^{\omega} + s_p^{\omega} + t_p^{\omega} = d_p^{\omega}}} \forall p \in P, \forall \omega \in \Omega$$

$$(1)$$

Definition of the discharge time of each patient in each scenario.

Variables:

 a_p : appointment time of patient p

 d_p^{ω} : discharge time of patient p in scenario ω

 $\hat{w_p^{\omega}}$: waiting time of patient p in scenario ω

 E^{ω} : end of the day in scenario ω

<u>Parameters:</u>

 s_p^{ω} : treatment time of patient p in scenario ω

 t_p^{ω} : treatment time of patient p in scenario ω

 λ : weight in objective

$$\min_{a,x^{\omega},d^{\omega},w^{\omega},E^{\omega}} \quad \lambda \sum_{p \in P} \sum_{\omega \in \Omega} w_p^{\omega} + (1-\lambda) \sum_{\omega \in \Omega} E^{\omega} \tag{0}$$
subject to
$$\sum_{c \in C} x_{pc}^{\omega} = 1 \qquad \forall p \in P, \forall \omega \in \Omega \tag{1}$$

$$a_p + w_p^{\omega} + s_p^{\omega} + t_p^{\omega} = d_p^{\omega} \qquad \forall p \in P, \forall \omega \in \Omega \tag{2}$$

$$a_{p_1} + w_{p_1}^{\omega} + M(2 - x_{p_1c}^{\omega} - x_{p_2c}^{\omega}) \ge d_{p_2}^{\omega} \quad \forall c \in C, \forall p_1 > p_2 \in P, \forall \omega \in \Omega \tag{3}$$

A patient can sit on his chair only if all the previous patients assigned to his chair have been discharged.

<u>Variables:</u>

 a_p : appointment time of patient p

 d_p^ω : discharge time of patient p in scenario ω

 $\hat{w_p}^{\omega}$: waiting time of patient p in scenario ω

 E^{ω} : end of the day in scenario ω

<u>Parameters:</u>

 s_p^{ω} : treatment time of patient p in scenario ω

 $t_p^{\dot{\omega}}$: treatment time of patient p in scenario ω

 λ : weight in objective

$$\min_{a,x^{\omega},d^{\omega},w^{\omega},E^{\omega}} \quad \lambda \sum_{p \in P} \sum_{\omega \in \Omega} w_p^{\omega} + (1-\lambda) \sum_{\omega \in \Omega} E^{\omega} \tag{0}$$
subject to
$$\sum_{c \in C} x_{pc}^{\omega} = 1 \qquad \forall p \in P, \forall \omega \in \Omega \tag{1}$$

$$a_p + w_p^{\omega} + s_p^{\omega} + t_p^{\omega} = d_p^{\omega} \qquad \forall p \in P, \forall \omega \in \Omega \tag{2}$$

$$a_{p_1} + w_{p_1}^{\omega} + M(2 - x_{p_1c}^{\omega} - x_{p_2c}^{\omega}) \ge d_{p_2}^{\omega} \quad \forall c \in C, \forall p_1 > p_2 \in P, \forall \omega \in \Omega \tag{3}$$

$$a_{p_1} + w_{p_1}^{\omega} \ge a_{p_2} + w_{p_2}^{\omega} + s_{p_2}^{\omega} \qquad \forall p_1 > p_2 \in P, \forall \omega \in \Omega \tag{4}$$

A patient can sit on his chair if the nurse has finished to prepare all previous patients on his pod.

<u>Variables:</u>

 a_p : appointment time of patient p

 d_p^ω : discharge time of patient p in scenario ω

 w_p^ω : waiting time of patient p in scenario ω

 E^{ω} : end of the day in scenario ω

<u>Parameters:</u>

 s_p^{ω} : treatment time of patient p in scenario ω

 $t_p^{\hat{\omega}}$: treatment time of patient p in scenario ω

 λ : weight in objective

$$\min_{\substack{a,x^{\omega},d^{\omega},w^{\omega},E^{\omega} \\ \text{subject to}}} \lambda \sum_{p \in P} \sum_{\omega \in \Omega} w_p^{\omega} + (1-\lambda) \sum_{\omega \in \Omega} E^{\omega} \tag{0}$$

$$\sum_{c \in C} x_{pc}^{\omega} = 1 \qquad \forall p \in P, \ \forall \omega \in \Omega \tag{1}$$

$$a_p + w_p^{\omega} + s_p^{\omega} + t_p^{\omega} = d_p^{\omega} \qquad \forall p \in P, \ \forall \omega \in \Omega \tag{2}$$

$$a_{p_1} + w_{p_1}^{\omega} + M(2 - x_{p_1c}^{\omega} - x_{p_2c}^{\omega}) \ge d_{p_2}^{\omega} \quad \forall c \in C, \ \forall p_1 > p_2 \in P, \ \forall \omega \in \Omega \tag{3}$$

$$a_{p_1} + w_{p_1}^{\omega} \ge a_{p_2} + w_{p_2}^{\omega} + s_{p_2}^{\omega} \qquad \forall p_1 > p_2 \in P, \ \forall \omega \in \Omega \tag{4}$$

$$E^{\omega} \ge d_p^{\omega} \qquad \forall p \in P, \ \forall \omega \in \Omega \tag{5}$$

Definition of the end of the day in each scenario.

Variables:

 a_p : appointment time of patient p

 d_p^ω : discharge time of patient p in scenario ω

 w_p^{ω} : waiting time of patient p in scenario ω

 E^{ω} : end of the day in scenario ω

<u>Parameters:</u>

 s_p^{ω} : treatment time of patient p in scenario ω

 $t_p^{\bar{\omega}}$: treatment time of patient p in scenario ω

 λ : weight in objective

$$\min_{a,x^{\omega},d^{\omega},w^{\omega},E^{\omega}} \quad \lambda \sum_{p \in P} \sum_{\omega \in \Omega} w_p^{\omega} + (1-\lambda) \sum_{\omega \in \Omega} E^{\omega} \tag{0}$$
subject to
$$\sum_{c \in C} x_{pc}^{\omega} = 1 \qquad \forall p \in P, \forall \omega \in \Omega \tag{1}$$

$$a_p + w_p^{\omega} + s_p^{\omega} + t_p^{\omega} = d_p^{\omega} \qquad \forall p \in P, \forall \omega \in \Omega \tag{2}$$

$$a_{p_1} + w_{p_1}^{\omega} + M(2 - x_{p_1c}^{\omega} - x_{p_2c}^{\omega}) \ge d_{p_2}^{\omega} \qquad \forall c \in C, \forall p_1 > p_2 \in P, \forall \omega \in \Omega \tag{3}$$

$$a_{p_1} + w_{p_1}^{\omega} \ge a_{p_2} + w_{p_2}^{\omega} + s_{p_2}^{\omega} \qquad \forall p_1 > p_2 \in P, \forall \omega \in \Omega \tag{4}$$

$$E^{\omega} \ge d_p^{\omega} \qquad \forall p \in P, \forall \omega \in \Omega \tag{5}$$

$$x_{pc}^{\omega} \in \{0, 1\} \qquad \forall c \in C, \forall p \in P, \forall \omega \in \Omega \tag{5}$$

$$a_p \ge 0 \qquad \forall p \in P \tag{7}$$

$$w_p^{\omega}, d_p^{\omega} \ge 0 \qquad \forall p \in P, \forall \omega \in \Omega \tag{8}$$

Binary and non-negativity constraints.

Variables:

 a_p : appointment time of patient p

 d_p^{ω} : discharge time of patient p in scenario ω

 w_p^{ω} : waiting time of patient p in scenario ω

 E^{ω} : end of the day in scenario ω

<u>Parameters:</u>

 s_p^{ω} : treatment time of patient p in scenario ω

 $t_p^{\bar{\omega}}$: treatment time of patient p in scenario ω

 λ : weight in objective

Intractability of this model

- Large scale MIP (large number of scenarios)
- Weak relaxation bound

Number of Scenarios	Solve Time
1	1 sec
5	15 sec
10	1 min
20	3 min
50	15 min
100	10 h*
500	1000 h*

(* Estimates)

Outline of the presentation

- Description of the problem
- Stochastic Optimization Model
- Decomposition Algorithm
- Future Research

Appointment Times: a_p

Chair Assignment: x^ω_{cp}

The Fix-Unfix Algorithm

<u>Improvement:</u> $c(A_1, X_1) \ge c(A_1, X_2) \ge c(A_2, X_2)$

Termination: We iterate until we find the same chair assignment twice

Results of the Algorithm

- Instance with 1000 scenarios
- Runtimes < 4 sec
- Between 2 and 7 iterations before termination

End Of Day - Waiting Chart

Generalized Jensen's Bound

General Idea: apply Jensen inequality to the objective function

Traditional Jensen's Bound $\min_{\substack{x^\omega \; ; \; Ax^\omega = b \\ \forall \omega \in \Omega}} \sum_{\omega \in \Omega} p^\omega c^T x^\omega \geq \sum_{\omega \in \Omega} p^\omega \min_{\substack{x^\omega : Ax^\omega = b}} c^T x^\omega$ Original Scenarios Aggregate Scenario

Generalized Jensen's Bound

General Idea: apply Jensen inequality to the objective function

Traditional Jensen's Bound

Generalized Jensen's Bound

$$\min_{\substack{x^{\omega}: Ax^{\omega} = b \\ \forall \omega \in \Omega}} \sum_{\omega \in \Omega} c^{T} x^{\omega} \ge \sum_{i \in [1,k]} p(G_{i}^{\omega}) \min_{\substack{x^{\omega}: Ax^{\omega} = b \\ \forall \omega \in G_{i}}} c^{T} x^{\omega}$$

where $\{G_1 \dots G_k\}$ is a partition of Ω

Comparison of the *FUn* Heuristic & Jensen's bound

- Instance with 1000 scenarios
- Jensen's bound computed with 20 groups of 50 scenarios

Trade-off between Wait Time and Length of Day

Generalized Jensen's Bound: An improvement

General Idea: Waiting is high due to variability of the scenarios

Generalized Jensen's Bound: An improvement

General Idea: Waiting is high due to variability of the scenarios

We should order the scenarios by total treatment length before grouping

Comparison of the Algorithm & Jensen's bound

- Instance with 1000 scenarios
- Jensen's bound with 5 and 20 groups of 50 scenarios (sorted method)

Trade-off between Wait Time and Length of Day

Comparison of the Algorithm & Jensen's bound

 Performance ratio <u>obj(Algo)</u> - LB LB

Objective values of algorithm and lower bounds

Outline of the presentation

- Description of the problem
- Stochastic Optimization Model
- Decomposition Algorithm
- Future Research

Future Work

Theoretical Work:

- Understand why the Fix-Unfix algorithm works so well
- Can this algorithm be successfully applied to some famous problems?
- Merge scheduling phases 1 and 2 in a single optimization model

Towards an implementation at the Cancer Center:

- Define general rules/guidelines to help the phase 1 scheduling process
- Find easy-to-implement good sequences: Longest
 (Shortest) Processing Time First, Shortest Variance First...

CHEPS and the HEPS Master's Program

- CHEPS: The Center for Healthcare Engineering and Patient Safety
- HEPS: Industrial and Operations Engineering (IOE)
 Master's Concentration in Healthcare Engineering and Patient Safety offered by CHEPS
- CHEPS and HEPS offer unique multidisciplinary teams from engineering, medicine, public health, nursing, and more collaborating with healthcare professionals to better provide and care for patients
- For more information, contact Amy Cohn at <u>amycohn@umich.edu</u> or visit the CHEPS website at: https://www.cheps.engin.umich.edu

Thank you

Jeremy Castaing

jctg@umich.edu

Pr. Amy Cohn

amycohn@umich.edu

Department of Industrial and Operations Engineering
University of Michigan

