
OPTIMAL COPAYMENT RESTRUCTURING FOR HYPERTENSION PHARMACOTHERAPY

Greggory J Schell, MSE, PhD Candidate
Mariel S Lavieri, PhD
University of Michigan, Department of Industrial and
Operations Engineering
2014 Healthcare Engineering and Patient Safety
Symposium

Hypertension Pharmacotherapy Model

Embed dynamic programming model within a nonlinear program to determine optimal copayments

Results for Medicare Patients

Percent of Prescription Cost Covered

	Current Policy	Optimal Policy	
		Budget Neutral	Increased Budget
Patients with Diabetes	37%	100%	100%
Patients without Diabetes	37%	15%	100%

Performance Measures

	Optimal Policy	
	Budget Neutral	Increased Budget
Total Quality-Adjusted Life Years		
Saved Per 1000 Patients*	4.20	19.19
Total Lives Saved Per 1000 Patients*	0.92	3.86
Total Cardiovascular Events Averted		
Per 1000 Patients*	2.18	10.71

^{*}Compared to current policy

Conclusion

- Utilitarian approach creates inequity
 - 100% vs. 15% coverage
- Inequity is politically infeasible
- More resources (higher taxes) naturally creates copayment equity
- Cost-effectiveness and tradeoff analysis