Implementing a Residency Scheduling Program at the University of Michigan Pediatric Emergency Department

> Amy Cohn University of Michigan

> > IFORS Barcelona July 2014

Acknowledgements

- Ongoing collaboration with many talented contributors
 - Summer 2014 Team
 - UMHS Chief Resident Ed O'Brien
 - Students: Young-Chae Hong, William Pozehl, Zak VerShure, Peter Mayoros, Ji Wang, Jared Kott, Nina Scheinberg, Aaron Cohen, Hannah Schapiro, Daniel Hazlett

BRIEF BACKGROUND ON RESIDENCY

What is medical residency?

- Transition period between medical school and fully independent/unsupervised practice
 - Four years of med school
 - First year of residency "Intern"
 - Two more years of residency
 - Possibly one or two additional years as "Chief Resident"
 - Possibly more years as a "Fellow"
- During all of this time, providing patient care (albeit with the oversight of a more senior "attending" physician –supervision decreases over time)

What is medical residency?

- A key issue: Dual role of residency
 - Learning experience: Residency (and Fellowship) are parts of the medical education training process
 - Patient care: Residents/Fellows provide a significant amount of the patient care in teaching hospitals and the associated clinical system
- A typical resident might engage in all of the following activities:
 - "Continuity clinics"
 - Shifts on service
 - Seminars, formal educational activities
 - Research

Inherent Time Conflicts

- How to schedule residents' time
 - Need adequate patient coverage with a limited pool of residents
 - Need adequate training opportunities
 - Need adequate rest fatigue increases risk of error
 - Need to address resident satisfaction, personal life
- Not just quantity of hours but pattern
 - Continuity of care
 - Sleep issues (especially associated with overnight shifts)
 - Opportunities for different medical experiences
 - Quality of life, fatigue, and stress issues

MONTHLY SHIFT SCHEDULING OF PEDIATRIC EMERGENCY DEPARTMENT RESIDENTS

What is the general problem?

 Given a set of residents assigned to a shiftbased service, build a month-long schedule that satisfies all patient care, educational, and other requirements

What is our specific problem?

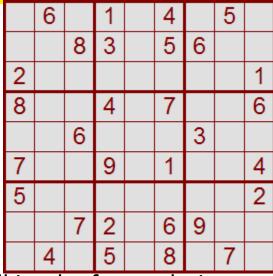
- Assigning residents to shifts to cover the pediatric emergency department in Mott Children's Hospital at UMHS
- Eight overlapping shifts per day
- Month-long schedule (but conflicting *switch dates* depending on the resident)
- Approximately 15 residents per month, coming from four or five different residency programs

What are the rules?

- Patient care requirements:
 - 8 overlapping shifts every day of the month
 - Every shift has to have exactly one resident assigned
 - Exceptions: 10a 7p and 12p 9p shift coverage is optional
 - Not *all* of these shifts can be left uncovered for the entire month
 - Ideally one of the two "flex shifts" should be covered each day
 - Certain shifts cannot be assigned to an intern
 - Certain overlapping pairs of shifts require a Peds resident on at least one of the two shifts

What are the rules?

- Resident availability
 - Senior residents switch on the first of the month
 - Interns switch on the 27th of the preceding month
 - Pre-assigned vacation time must be respected
 - Continuity clinics/post CC
 - Some shifts are pre-assigned to certain residents/programs
 - 10-hour rule
 - First and last shifts must recognize boundaries of other rotations


What was the current state?

- Schedules typically built by Chief Residents
- Limited decision support
- No formal training
- Hard to satisfy all rules
- Unlikely to make everyone happy

8

Why is it hard to schedule manually?

- The more squares you fill in, the fewer choices you have left for what is valid
- Once you make a mistake, you might not know it for a long time
- Once you realize something is wrong, it can be very hard to back track and correct
- If a requirement changes, you have to start from scratch

How do we solve it?

• Mixed integer programming approach

 $-x_{rsd} = 1$ if resident *r* is assigned to shift *s* on day *d*, else 0

- Feasibility constraints are straightforward to model
- Run time using C++ and CPLEX on a standard PC is minimal (a few seconds at most)
- Finding a schedule that satisfies the rules is already progress over what exists (especially given time required)
- But not all feasible schedules are equally good

How to "optimize"?

- No one clear objective function, but many important metrics
 - Equity across residents
 - Number of shifts
 - Number of night shifts
 - General quality of schedule
 - "Bad sleep patterns"
 - Personal requests
 - Post-continuity clinic calls
 - Flex shift coverage
 - Transition shift coverage

How to "optimize"?

- We could treat this as a multi-criteria objective function, assign weights to normalize, and solve
 - Weights are hard to find
 - Convergence can slow dramatically
- Is "optimal" the right goal???
 - Is this an engineering construct that we're imposing inappropriately?

How to "optimize"?

- Our approach:
 - Set boundaries on the metrics
 - Define as hard constraints
 - Search for a feasible solution
 - If found, review and decide what to tighten next
 - If not found, loosen the boundaries
 - Repeat until satisfied

Current Work: Pareto Optimization

- No established rank order of metrics
- No weights can easily be established
 - "Game" for testing Chiefs' ability to provide appropriate weights
 - Preferences change from one month to another, e.g. when launching EMR
- Attempting to generate Pareto-dominant set of solutions
 - Given a solution, can add appropriate cut and re-solve to find a Pareto-improvements
 - Need to then "jump" to new solutions

ANNUAL BLOCK SCHEDULING OF PEDIATRIC RESIDENTS

Motivation

- Some months are easy to solve the ED shift scheduling problem, others very hard – why?
- Often depends on number of interns for the month (affect start/end periods and ability to fill shifts) and/or overlaps in continuity clinics
- Why do some months have lots of interns, others few? Why might cc's overlap (or not)?

Block Scheduling Problem

- Over the course of the year, residents must work on many *services*, divided in monthly *blocks*
 - Emergency medicine
 - Hematology/Oncology
 - NICU
 - Etc.
- Residents span multiple levels of seniority and come from multiple programs

Block Scheduling Requirements and Challenges

- Requirements
 - Coverage constraints (patient care)
 - Educational constraints
- Challenges
 - Vacation requests
 - Repeating hard services
 - Split-months (e.g. ½ ED, ½ vacation)

Approach

- Again, can formulate a straightforward IP
 - "Service pairs" as templates to recognize possible half-month combinations
 - Xrpm=1 if resident r is assigned to service pair p during month m
- Constraints are fairly straightforward

Approach

- Challenge is again with the objective function
 - Trading off vacation time requests vs "triple-H" limitations
 - Trading off vacations across residents, interpreting importance of requests
 - Lots of input from Chief (acceptable), lots of tweaking of the code (not so acceptable)

ISSUES OF GENERALIZATION

Higher Level Goals

- Shift scheduling occurs in many other contexts
- Block scheduling occurs in many other contexts
- Can we generalize models, computational frameworks, file i/o, etc. in such a way to generalize, encompass multiple environments with a single tool
 - Best to group by specialty, by time frame, or overall?

QUESTIONS, COMMENTS AND DISCUSSION

