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Abstract: In this paper we address the deterministic, multi-satellite, multi-ground station communi-
cation scheduling problem. As the number of small satellites in space increases, so does the demand for
downloading their large quantities of acquired data. Given the capacity-constrained ground station network,
efficient scheduling plays a major role in the overall performance of missions. The small-satellite dynamics
of collecting, storing, using, and spilling both data and energy further complicates schedule design. In this
paper we extend previous work on the single-satellite scheduling problem in order to incorporate simulta-
neously scheduling downloads from multiple satellites to a ground station network with the objective of
maximizing the total amount of data downloaded to Earth. We assume that ground stations are restricted
to receiving data from at most one satellite at a time and compare the results to those of the case where
ground stations may receive data from multiple satellites concurrently in order to determine the potential
download increase from such an enhanced communication capability. We create a greedy scheduling heuristic
in order to compare our model’s performance to a reasonable approximation of current scheduling methods.
We test our model on a variety of scenarios generated from defined probability distributions to demonstrate
how the model can be used to analyze the download performance of a satellite constellation. We also study
the model’s computational performance limits and sensitivity.

1 Introduction

Small satellites provide excellent opportunities to
gather data from space and are significantly less
expensive than larger, more traditional satellites.
Given the recent technological advances and expan-
sion of space applications [1], there has been a signif-
icant increase in the number of small satellites being
launched into space. From 2001-2005 fewer than 15
satellites in the 1-50 kg range were launched annu-
ally. Approximately 25 satellites in the same weight
range were launched annually from 2006-2012. In
2013 that number jumped to 92 satellites and is ex-
pected to rise an additional 52% in 2014 [2]. As
the number of satellites in space increases, so does
the total amount of acquired data. Given the finite
download capacity of the ground station network,
there is a growing need to efficiently schedule data

downloads and make the most of the available re-
sources.

The goal of this paper is to develop a model
for scheduling data downloads from a constellation
of satellites to a network of heterogeneous ground
stations, so as to maximize the total amount of
data downloaded to Earth while satisfying all en-
ergy and data requirements. We call this the deter-
ministic Multiple-Satellite, Multiple Ground Station
Scheduling Problem (MMSP).

Our research makes multiple contributions to
the small-satellite community. First, we develop a
model capable of quickly solving real-world schedul-
ing instances involving multiple satellites and mul-
tiple ground stations. Second, we identify the types
of real-world instances where optimization provides
the greatest gains over a simple greedy scheduling
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method. Third, we demonstrate the potential gains
that result from ground stations that are able to
simultaneously receive data from multiple satellites
at once using a Multiple Spacecraft Per Aperture
(MSPA) capability similar to that of the Deep Space
Network (DSN) [3]. Lastly, we lay the foundation
for future work that could incorporate equally dis-
tributed downloads or other factors such as priori-
tized data into the scheduling process.

The rest of the paper is as follows. Section 2
describes the details of our scheduling problem in-
cluding important definitions and assumptions. In
Section 3 we review the current literature relating
to the problem of scheduling data downloads from
space. In Section 4 we describe and present our
model formulation. In Section 5 we present compu-
tational results from testing this model on a variety
of problem instances and compare the results with
both an alternative scheduling method and the case
where ground stations have enhanced capabilities.
We conclude by summarizing our findings and pro-
viding suggestions for future research.

2 Problem Description

The problem is to maximize the total amount
of data downloaded from a constellation of satel-
lites to a network of ground stations over a fixed
planning horizon while satisfying the energy and
data dynamics of the system. As opposed to the
Single-Satellite, Multiple-Ground Station Schedul-
ing Problem (SMSP) proposed by Spangelo [4], our
MMSP involves multiple satellites which may si-
multaneously be in view of the same ground sta-
tion. Throughout this paper, we define the situa-
tion where multiple satellites are simultaneously in
view of a single ground station as a conflict. During
conflicts, ground stations are restricted to commu-
nicating with one satellite at a time.

In order to maximize the total amount of data
downloaded from space over some planning horizon
[0, T ], we generate a schedule that determines, for
specific time intervals, the optimal amount of data
for each satellite to download and to which ground
stations to download. We discretize the planning
horizon by defining a set of time intervals I as time
periods over which the view of each ground station

(and thus each satellite) is constant. Whenever the
view of any ground station changes, a new interval
begins.

For example, in Figure 1, Ground Station 3 and
Ground Station 1 can both see Satellite 1 and Satel-
lite 3 during Interval 1. The view of all ground
stations (and satellites) is constant throughout In-
terval 1. In Interval 2, Ground Station 3 can only
see Satellite 1, while Ground Station 1 can only see
Satellite 2.
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Figure 1: Defining Time Intervals

When creating a download schedule, energy and
data dynamics must be considered. As satellites
orbit Earth, they collect both energy and data at
varying rates over time. Satellites must use their
on-board energy to perform operations and to trans-
mit their data to Earth. The ground stations to
which they transmit their data vary in characteris-
tics such as energy required per bit of downloaded
data (joules), data rate of each download (bits per
second), and efficiency of each download (i.e. the
percentage of transmitted data that is successfully
received).

2.1 Assumptions

• A constellation of satellites is orbiting the
earth. Each satellite collects both energy and
data at rates that vary over time depending on
the view of each satellite and the line of sight
of its solar panels relative to the sun. We as-
sume the collection rates of both energy and
data are linear with respect to time across any
given interval.
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• Each satellite has minimum and maximum lev-
els of energy and data that can be stored in its
buffers. For simplicity, we assume all satellites
have the same energy and data storage capaci-
ties.

• While orbiting Earth, each satellite periodi-
cally comes in view of ground stations. Mul-
tiple ground stations may be in view at a par-
ticular time, but a satellite can only transmit
data to one ground station at a time.

• The orbit of each satellite is deterministic and
is known a priori, before any scheduling deci-
sions are made. Data and energy acquisition
rates for specific time intervals are known in
advance. Likewise, download opportunities to
specific ground stations at specific times are de-
termined beforehand.

• The ground station network consists of multi-
ple ground stations that each have a specific
download efficiency rate, download data rate,
and download energy cost associated with it.
For simplicity, we assume each of these char-
acteristics are constant over time, but this as-
sumption can easily be relaxed.

• Each ground station can have multiple satel-
lites in view at once, but can only receive in-
formation from one satellite at a time. In Sec-
tion 5 we relax this restriction and analyze the
results.

• We assume that there is no cost (time or en-
ergy) when a satellite switches between down-
loading from one ground station to another, or
when a ground station switches between receiv-
ing from one satellite to another.

• We assume that data lost due to inefficiencies
in the transmission from a satellite to a ground
station is detected and is kept on the satellite
for future download opportunities. For exam-
ple, if a satellite attempts to download 10 MB
of data but the ground station only receives 8
MB, that satellite keeps the 2 MB of data that
weren’t successfully transmitted and attempts
to transmit them during a later opportunity.

2.2 Energy and Data Dynamics

To ensure that each satellite has enough energy and
data to complete its scheduled downloads, we model
and enforce the energy and data dynamics of the
system. Solar energy is collected over time by each
satellite’s solar panels while energy is consumed in
order to perform satellite operations and to down-
load data. We can calculate e(i+1), the energy avail-
able to a satellite at the start of interval i+1, using
the following recursive equation:

e(i+1) = min{ei + δei − αiqi, emax, }

Here, δei is the net amount of energy gained dur-
ing interval i, αi is the energy consumption rate
for downloading (joules/bit), and qi is the amount
of data downloaded (bits). Since each satellite has
a maximum (emax) amount of energy that can be
stored on board, if more energy is acquired than
what can be stored, the excess is lost.

Similar to the energy dynamics, data is collected
over time by each satellite and is consumed when a
satellite downloads its data to a ground station. We
use an efficiency factor ηi,g that represents the per-
centage of data successfully sent to ground station
g during interval i. Therefore, we calculate d(i+1),
the data stored on a satellite at the start of interval
i+ 1, using the following recursive equation:

d(i+1) = min{di + δdi − ηi,gqi, dmax}

Similar to the energy equation, δdi is the amount of
data acquired during interval i, qi is the amount
of data downloaded, and dmax is the maximum
amount of data that can be stored.

We enforce these energy and data dynamics in our
optimization model in order to generate schedules
that are feasible in terms of both energy and data.

2.3 Download Example

To demonstrate how energy and data dynamics can
create scenarios where optimization outperforms
less sophisticated scheduling methods, consider the
following example involving a single satellite:

Castaing 3 28th Annual AIAA/USU
Conference on Small Satellites



Example 1: Download Scheduling

Interval 1 Interval 2
Maximum download

10 10
(bits)

Cost of download
2 1

(joules/bit)

Here, the maximum download amount is based
on the length of time available for the satellite to
download data. Assume that the satellite has 24
joules of energy for use on downloads, over 20 bits
of data, and does not gain any additional energy
or data during this planning horizon. In this ex-
ample, a myopic scheduling method would schedule
the satellite to download the maximum of 10 bits
of data during Interval 1, using 20 joules of energy.
Then, the remaining 4 joules of energy would be
used during Interval 2 to download 4 bits of data,
for a total of 14 bits. Using optimization on this ex-
ample would result in a schedule where the satellite
downloads 7 bits of data during Interval 1 and 10
bits of data during Interval 2, for a total of 17 bits.

Despite this being a simple example with only one
satellite and a few bits of data, it’s clear that op-
timization can add value to the scheduling process.
As more satellites, ground stations, and intervals
are considered in the planning horizon, the added
value of optimization becomes significant. With op-
timization, all future download opportunities in the
planning horizon are evaluated and the best possible
schedule is generated.

3 Literature review

Numerous articles studying satellite operations
(imaging, acquiring or downloading data, resource
management, etc.) can be found in both Aerospace
and Operations Research journals. However, very
few articles address the problem of conflicts in a
multi-satellite network. This brief literature review
aims to present some of these articles and show that
our study makes an important contribution to this
field.

Small satellites provide timely and often more af-
fordable opportunities to gather data from space
than larger, more traditional satellites. As a result,
many organizations including universities are now

building and using their own satellites. A descrip-
tion of additional advantages of small satellites can
be found in [1] and [5]. Miniaturized satellites, often
called Cubesats, are a popular choice for university
research and are used for a variety of missions such
as: [6],[7],[8],[9],[10],[11] and [12].

Since resources such as power and contact time
are limited when using satellites, optimizing the op-
erations schedule is crucial for acquiring data and
communicating with ground stations. The exten-
sive literature on scheduling for imaging satellites
has a similar objective to our research: scheduling
a sequence of typical tasks such as taking pictures to
maximize a certain objective associated with those
tasks while satisfying constraints related to the cost
of operating a satellite. [13] compares different re-
pair strategies for imaging satellites, while schedul-
ing under uncertainty is studied in [14] and [15].

However, most studies neglect data and energy
dynamics. These dynamics are described in a prob-
lem closely related to our research, the Single satel-
lite Multi-ground Station Problem (SMSP), which
addresses the download from a single spacecraft to a
network of ground stations, such as the Deep Space
Network [16], in a deterministic environment: [4]
and [17].

Following the recent launch of numerous satellites
[2], communication from a constellation of satellites
to a network of ground stations has been studied in
several articles: the satellites might be collaborat-
ing on a single mission or have different tasks [18].
A simulation approach to assess network capacity is
introduced in [19], while a heuristic to resolve con-
flict amongst satellites trying to download to the
same ground station is presented in [20].

For our research, we address the problem of
scheduling downloads from a multi-satellite constel-
lation to a multi-ground station network while en-
forcing energy and data dynamics. Although each of
these components have been studied independently,
we are unaware of any studies that have considered
all of the components together.

4 MMSP Model Formulation

In this section we present a mathematical program-
ming formulation of the MMSP model. This formu-
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lation enforces the data and energy dynamics de-
scribed in Section 2.2 and schedules satellite down-
loads to ground stations over the planning horizon.
Given the linear energy and data dynamics, this for-
mulation can be solved using well studied and effi-
cient linear programming methods. The objective
is to maximize the total amount of data received by
the ground station network.

We first describe the parameters and decision
variables of the model:

Sets and Subsets

• S is the set of satellites.

• G is the set of ground stations.

• I is the set of time intervals.

Parameters

• γsig = 1 if satellite s is in view of ground station
g during interval i. γsig = 0 otherwise.

• ηig is the efficiency (fraction of downloaded
data successfully received by the ground sta-
tion) during interval i when downloading to
ground station g.

• ti is the duration of interval i, measured in sec-
onds.

• φig is the data rate associated with download-
ing data to ground station g during interval i,
measured in bits/second.

• αig is the energy cost associated with down-
loading to ground station g during interval i,
measured in joules/bit.

• emin, emax, and dmax are the minimum and
maximum allowable amounts of energy and
data to be stored in the buffer, measured in
joules and bits.

• estart and dstart are the amounts of energy and
data stored in the buffers at the beginning of
the planning horizon, measured in joules and
bits.

• δesi and δdsi are the total net amounts of energy
and data that are acquired by satellite s during
interval i, measured in joules and bits.

Variables

• xsig ∈ [0, 1] is a continuous variable represent-
ing the percentage of interval i during which
satellite s downloads to ground station g.

• qsig is the amount of data downloaded by satel-
lite s during interval i to ground station g, mea-
sured in bits.

• esi and dsi are the amounts of energy and data
available for satellite s at the beginning of in-
terval i, measured in joules and bits.

• hesi and hdsi are the amounts of excess energy
and data spilled by satellite s throughout in-
terval i, measured in joules and bits.

max
∑
s∈S

∑
i∈I

∑
g∈G

ηigqsig (1)

Subject to:

xsig ≤ γsig ∀s ∈ S, i ∈ I, g ∈ G (2)∑
s∈S

xsig ≤ 1 ∀i ∈ I, g ∈ G (3)∑
g∈G

xsig ≤ 1 ∀s ∈ S, i ∈ I (4)

qsig ≤ tiφigxsig ∀s ∈ S, i ∈ I, g ∈ G (5)
es0 = estart ∀s ∈ S (6)
emin ≤ esi ≤ emax ∀s ∈ S, i ∈ I (7)
es,i+1 = esi + δesi

−
∑
g∈G

αigqsig − he
si ∀s ∈ S, i ∈ I (8)

ds0 = dstart ∀s ∈ S (9)
0 ≤ dsi ≤ dmax ∀s ∈ S, i ∈ I (10)

ds,i+1 = dsi + δdsi
−

∑
g∈G

ηi,gqsig − hd
si ∀s ∈ S, i ∈ I (11)

0 ≤ xsig ≤ 1 ∀s ∈ S, i ∈ I, g ∈ G (12)

qsig, esi, dsi, h
e
si, h

d
si ∈ R+ ∀s ∈ S, i ∈ I, g ∈ G (13)

Description of each constraint:

• (1) The objective maximizes the total amount
of data that is successfully downloaded from
each satellite during the planning horizon.

• (2) Downloads are only allowed if the satellite
is in range of the ground station.

• (3) Each ground station cannot receive data for
more than 100% of each time interval.
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• (4) Each satellite cannot transmit data for
more than 100% of each time interval.

Note: (3) and (4) ensure that we generate a
schedule where satellites only download to one
ground station at a time and ground stations
only receive data from one satellite at a time.

• (5) The amount of data downloaded from a
satellite to a ground station is limited by the
time length of the download and the download
rate of the ground station.

• (6-11) Data and energy dynamics

• (12-13) Definition of variables

5 Computational Results

We present computational results to address the fol-
lowing questions:

1. What types of scenarios benefit most from our
optimization model?

2. How do the results of our model compare to
those from a more common scheduling method?

3. How large of a problem instance can the model
solve?

4. How sensitive is our model’s solve time to the
problem’s parameters?

5.1 Data Generation

For computational tests, we generated data sets
for a variety of problem instances. It should be
noted that these problem instances are for test-
ing purposes only and are not intended to repli-
cate a real-world network of satellites and ground
stations. However, given any real-world data set,
we could conduct similar analysis. For parameters
where real-world variation is expected, such as the
energy gained during each time interval, we ran-
domly generated the values from defined probabil-
ity distributions. For each set of parameters tested
in the experiments, we generated and sequentially
solved 50 random problem instances. For each of
the computational experiments, we started with the
base case of parameters and distributions described

below, and modified them as indicated in each spe-
cific experiment.

To generate the orbit information, we first gener-
ated a set of time intervals with uniformly random
lengths between one and thirty seconds. Using the
probabilities listed in Table 1, we randomly gener-
ated the number of ground stations each satellite
would see during each time interval. We then ran-
domly selected that number of ground stations from
the set of ground stations using a uniform distribu-
tion.

Table 1: Base Case Model Parameters

Description Default Value

Number of satellites 20

Number of ground stations 15

Number of time intervals 100

Time Interval Length Uniform (1,30)

Prob (see 0 ground stations) 25%

Prob (see 1 ground station) 25%

Prob (see 2 ground stations) 25%

Prob (see 3 ground stations) 25%

Prob (see 4 ground stations) 0%

Prob (see 5 ground stations) 0%

Additional base case parameters indicated in Ta-
ble 1 include the number of satellites, ground sta-
tions, and time intervals in the planning horizon.

Our base case satellite parameters are included
in Table 2. We assume that satellites are storing
their maximum amount of energy and data at the
start of our planning horizon. As indicated, the
amount of energy and data gained during each in-
terval follow normal distributions that are restricted
to non-negative values.

Table 2: Satellite Parameters

Satellite Data Descriptions Default Value

Minimum energy level (emin) (Joules) 0

Maximum energy level (emax) (Joules) 100

Starting energy level (e0) (Joules) e max

Maximum data level (dmax) (bits) 100

Starting data level (d0) (bits) d max

Energy Gain (δesi) (Joules per interval) Normal (30,15)

Data Gain (δdsi) (bits per interval) Normal (10,5)
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Our base case ground station parameters are in
Table 3. We truncate the efficiency parameter at
100% and round up negative realizations of the
other ground station parameters to zero.

Table 3: Ground Station Parameters

Ground Station Descriptions Default Value

Efficiency Percentage (η) Normal (1,0.2)

Data Rate (φ) (bits/sec) Normal (4,2)

Energy Cost (α) (Joules/bit) Normal (5,2.5)

5.2 Unrestricted Ground Station
Model

In addition to solving the MMSP problem as stated
in Section 4, we also consider a relaxed version that
allows ground stations to simultaneously receive
downloads from multiple satellites. This relaxed
model provides an upper bound on our model’s ob-
jective function and provides insights on the sys-
tem’s total download potential given such a ground
station capability [21]. The formulation of this
model is obtained directly from the MMSP model
by simply removing constraint (3):

∑
s∈S xsig ≤

1 ∀i ∈ I, g ∈ G.

5.3 Greedy heuristic

One reasonable approach to scheduling downloads
from a single satellite to a network of ground sta-
tions is to download as much data as possible during
every download opportunity. However, as noted in
Example 1, this greedy method may not generate an
optimal solution. As a benchmark and alternative
to our scheduling model, we propose the following
scheduling heuristic for the MMSP:

1. Divide each interval of the planning horizon
into k pieces (we use k = 100).

2. Start with the first piece of the first interval in
the planning horizon.

3. Generate the set D of all possible download
amounts from satellites to ground stations.

4. Select the maximum value in D, schedule the
corresponding download from satellite s to

ground station g, and remove any download in-
volving satellite s or ground station g from D.
Return to step 3 as long as the maximum value
in D is positive and additional satellites and
ground stations are available.

5. Update the energy and data available on each
satellite for piece i+ 1. Move to piece i+ 1 and
return to step 3.

6. End once the last piece of the planning horizon
is scheduled.

This greedy heuristic creates a download sched-
ule where satellites download to no more than one
ground station during each piece of the interval and
ground stations receive data from no more than one
satellite during each piece of the interval. Using
this method does not necessarily result in the max-
imum amount of data being downloaded for each
individual time interval. Consider Example 2 be-
low which involves two satellites and two ground
stations. Since the best option is for Satellite 1 to
download to Ground Station 1, this download will
be scheduled and the total amount of data down-
load will be 20 MB. However, scheduling Satellite
1 for Ground Station 2 and Satellite 2 for Ground
Station 1 results in a total download of 25 MB, the
best solution.

Example 2: Greedy Download Amounts

Satellite 1 Satellite 2
Ground Station 1 20 10
Ground Station 2 15 0

5.4 Objective Value Analysis

In this section we explore objective value differences
between the MMSP model and both the greedy
scheduling heuristic and unrestricted ground sta-
tion problem under a variety of parameter scenarios.
Since the unrestricted model relaxes the restriction
that ground stations can only communicate with
one satellite at a time, the optimal objective value
of the MMSP can be no better than that of the un-
restricted problem. The unrestricted problem also
provides insight into the potential gains from an en-
hanced ability that allows simultaneous communi-
cation with multiple satellites.
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In general, we find that for problem instances
where there are a large number of conflicts, where
ground station utilization is low, or where en-
ergy acquisition is low, our model performs signif-
icantly better than the greedy heuristic and gener-
ates schedules with optimal values close to those of
the unrestricted ground station problem.

5.4.1 Number of Satellites

In Figure 2 we fix the number of ground stations at
20 and increase the number of satellites from 10 to
130. We plot the objective values as a percentage
of the unrestricted model’s objective value to high-
light the relative performance of each model. As
the number of satellites increases and the constella-
tion becomes more congested, the objective value of
the greedy heuristic approaches that of the MMSP.
This is due to the fact that for congested constel-
lations, ground station utilization is close to 100%
and it is therefore rarely beneficial for satellites to
wait for future download opportunities. In instances
where congestion is lower, MMSP’s objective is very
close to that of the unrestricted problem. Intuitively
this makes sense since the higher the ground station
utilization, the more beneficial it is to increase the
download capacity of the ground station network,
which is what the unrestricted problem does. The
optimal objective value of the unrestricted model
continues to increase with the addition of satellites
since every satellite can download data at the same
time. This increases the total capacity of the ground
station network. In contrast, the ground station
network of the MMSP and the greedy heuristic have
a fixed download capacity and therefore there is an
upper bound on the total amount of data down-
loaded. Since we plot the objective values as a per-
centage of the unrestricted model’s, we observe the
download trends of MMSP and Greedy in Figure 2.

5.4.2 Number of Ground Stations in View

In Figure 3 we fix the number of satellites and
ground stations and increase the expected number
of ground stations in view of each satellite during
each interval. When the expected number is low,
the objective value of the greedy heuristic is closer
to the two optimizations. In these instances, satel-
lites see ground stations less frequently and there-
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Figure 2: Objective Value Differences With 20
Ground Stations

fore are more likely to have enough data and energy
for all of their download opportunities. Addition-
ally, it is more likely that only one satellite is in
view of a ground station at a time. Therefore, it of-
ten makes sense to download data whenever there is
an opportunity. However, as the number of ground
stations in view increases, more conflicts occur, and
energy and/or data levels become more important,
the value of optimization becomes more proclaimed.
When each satellite expects to see 2 ground sta-
tions during each interval, the system appears to
approach a steady state. This indicates that the
satellites have enough opportunities to download
their data, but do not have enough energy and/or
data to use each opportunity. Therefore having ad-
ditional opportunities for the satellites to download
data is not beneficial, but having more energy would
be beneficial.

5.4.3 Energy Acquisition

To assess the potential benefit from an improved
ability to acquire energy, such as improved solar
panels, we varied the average amount of energy ac-
quired by each satellite during each interval. Re-
sults are included in Figure 4. Again, we are able
to identify the point where the system reaches its
maximum capacity and the marginal benefit of ac-
quiring additional energy approaches zero. For in-
stances where the average amount of energy ac-
quired is large, the greedy heuristic performs al-
most as well as the optimizations because there is
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Figure 3: Objective Values for Expected Number
of Ground Stations in View

an abundance of energy and it is rarely beneficial for
satellites to save energy for future download oppor-
tunities. However, in instances where less energy is
acquired and satellites may become starved of en-
ergy, there is a clear and significant benefit to using
optimization for scheduling.
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Figure 4: Objective Values for Energy Acquisition

5.4.4 Battery Size

To evaluate the potential benefit from an increase in
the energy capacity of satellites, we varied the max-
imum amount of energy that can be stored on each
satellite. Results are included in Figure 5. Given
our base case of parameters, we can identify the
point where the system reaches a steady state and
there is no additional benefit from improved energy
storage capabilities.
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Figure 5: Objective Values for Energy Capacity

5.5 Solve Time Analysis

In this section we study the effects of various sce-
nario parameters on the model’s solve time. For
each experiment we solved the model 50 times us-
ing an Intel Xeon E3-1230 quad-core running at
3.20 GHz with hyper-threading and 32 GB of RAM.
We used IBM ILOG Optimization Studio (CPLEX )
12.6 C++ API software package. In general, we
found that although the solve times increase for
certain problem instances, the model solves quickly
with a wide variety of parameter settings.

5.5.1 Number of time intervals

Using the base case of parameters, we varied the
number of time intervals in our mission planning
horizon. Figure 6 shows that although the time re-
quired to solve increases with the number of inter-
vals, with 5000 intervals the average solve time is
only slightly greater than one minute. For inter-
val lengths of 5 minutes, 5000 intervals represents
a planning horizon of 17 days. The vertical bars
in Figure 6 represent the maximum and minimum
solve times recorded for each scenario.

5.5.2 Number of Satellites

In addition to recording the objective values, we
recorded the solve times for the experiment de-
scribed in section 5.4.1. The experiment used the
base case parameter values with 20 ground stations,
varying the number of satellites from 10 to 130 in in-
crements of 5. In this range, the average solve time
increased approximately linearly from 0.14 seconds
to 8.04 seconds. Although this is a relatively large
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increase, the solve time remains practical and does
not increase at an exponential rate with an increas-
ing number of satellites.

5.5.3 Number of Ground Stations in View

To test how solve times are affected by the num-
ber of conflicts, we varied the expected number
of ground stations in view of each satellite during
each interval. Increasing the number of conflicts in-
creases both the number of download opportunities
and the number of download options to consider for
each opportunity. Starting with an expected value
of 0.25 ground stations, we increased this value to
5 ground stations in increments of 0.25. Over this
range the model’s average solve time increased from
0.17 to 1.02 seconds. Although this is a significant
increase, solve times remain fast.

6 Conclusion and Future Re-
search

With the rapidly growing number of small satellites
being launched, there has been a significant increase
in the amount of data being collected from space.
Given the energy and data constrained satellites,
finite number of download opportunities, and lim-
ited capacity of the ground station network, it is
essential to use the available resources as efficiently
as possible. In this paper, we defined the Multiple-
Satellite, Multiple Ground Station Scheduling Prob-

lem and presented an optimization formulation for
solving it.

Through computational testing, we showed that
our model quickly solves a wide variety of prob-
lem instances. In all instances, our model gener-
ates schedules that increase the total amount of data
downloaded from space as compared to a traditional
greedy scheduling method. Using a variety of com-
putational experiments, we showed how our model
can be used to identify the effects of satellite char-
acteristics such as energy acquisition capabilities
and data/energy storage capacities. By also solving
the problem where ground stations have the ability
to simultaneously communicate with multiple satel-
lites, we are able to access the potential satellite
download gains from such an enhanced communi-
cation capability. The ability to identify the bot-
tlenecks of the system provides useful information
about where improvements can be made to create
the greatest impact.

Lastly, we identified the characteristics of prob-
lem instances where optimization provides the most
benefit over a simpler scheduling method. Specif-
ically, we found optimization most helpful for
scheduling instances with less congested satellite
constellations, where satellites see more ground sta-
tions during each time interval, and when satel-
lites have low energy acquisition rates. In general,
we conclude that optimization adds the most value
when data and/or energy is a limiting factor for the
satellites.

Although not considered in this paper, our model
can easily incorporate multiple download options
per ground station. Including additional options
provides opportunities to optimize the tradeoffs be-
tween such things as data rate and energy consump-
tion and further improve the overall performance of
the system. We could also use our model to ana-
lyze the amount of data that is held on satellites
over time due to limited capacities of the satellites
or the ground station network.

For future research, the system’s inherent
stochastic nature could be modeled in order to solve
problem instances where the specifics of download
opportunities are not known in advance. Address-
ing prioritized downloads where specific downloads
are more important than others, and possibly have
expiration times, provides another area for future
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work. Furthermore, incorporating fairness into the
download schedule is an important issue, especially
for satellite constellations involving multiple, inde-
pendent users. This issue could be addressed by
guaranteeing each satellite some minimum amount
of downloaded data based on its total download ca-
pacity. Lastly, we hope to apply our model to real-
world data sets in order to help design the next
generation of small satellites and create download
schedules that optimally use the available commu-
nication resources.
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