Optimal Download Scheduling for Satellite Missions

Jeremy Castaing

University of Michigan 08-06-2014

Faculty Advisors: Prof Amy Cohn, Prof James Cutler

Motivations

<u>Flock 1: 28 Dove</u> <u>Satellites launched</u> <u>on Feb 11th, 2014</u>

1 - 50 kg Satellite Launches [1]		
Year:	Approx. Launches Per Year:	
2006-2012	25	
2013	92	
2014	140 (estimated)	

Some ground station antennas

Goal and Outline

 Schedule downloads during a multi-satellite, multi-ground station system.

Orbits and Ground Stations

Tracking satellites using the "Retrotrack" web-application

The Multi-Satellite, Multi-Ground Station Scheduling Problem (MMSP)

- Objective is to maximize the total amount of data downloaded over the planning horizon
- Subject to:
 - Download opportunities
 - Conflicts
 - Energy & Data Dynamics
 - Ground Stations Characteristics:
 - Download Rate (bits/sec)
 - Download Cost (joules/bit)
 - Efficiency (percentage of download actually received)

Download Decisions

• x_{sig} – Percentage of interval i that satellite s downloads to ground station g

• q_{sig} – Amount of data downloaded from satellite s during interval i to ground station g

A Simple Schedule

	Ground Station 1			
	Interval 1		Inter	val 2
	X	q	X	q
Satellite 1	40%	2 Mb	0%	0 Mb
Satellite 2	60%	3 Mb	30%	1 Mb

The Full Optimization Model

Objective

$\max \sum \sum \eta_{ig} q_{sig}$ $s \in S \ i \in I \ g \in G$

$$s \in S \ i \in I \ g \in G$$

$$x_{sig} \leq \gamma_{sig} \qquad \forall s \in S, \ i \in I, \ g \in G \qquad (1)$$

$$\sum_{s \in S} x_{sig} \leq 1 \qquad \forall i \in I, \ g \in G \qquad (2)$$

$$\sum_{g \in G} x_{sig} \leq 1 \qquad \forall s \in S, \ i \in I \qquad (3)$$

$$q_{sig} \leq t_i \phi_{ig} x_{sig} \qquad \forall s \in S, \ i \in I, \ g \in G \qquad (4)$$

$$e_{s0} = e_{start} \qquad \forall s \in S \qquad (5)$$

$$e_{min} \leq e_{si} \leq e_{max} \qquad \forall s \in S, \ i \in I \qquad (6)$$

$$e_{s,i+1} = e_{si} + \delta_{si}^{e}$$

$$-\sum_{g \in G} \alpha_{ig} q_{sig} - h_{si}^{e} \qquad \forall s \in S, \ i \in I \qquad (7)$$

Constraints

$$d_{s0} = d_{start} \qquad \forall s \in S \qquad (8)$$

$$0 \leq d_{si} \leq d_{max} \qquad \forall s \in S, i \in I \qquad (9)$$

$$d_{s,i+1} = d_{si} + \delta_{si}^{d} \qquad (10)$$

$$-\sum_{g \in G} \eta_{i,g} q_{sig} - h_{si}^{d} \quad \forall s \in S, i \in I \qquad (10)$$

Example of Constraints: Energy Dynamics

1) Initialization: energy available at beginning of planning horizon

$e_{s0} = e_{start}$	$\forall s \in S$
$e_{min} \le e_{si} \le e_{max}$	$\forall s \in S, i \in I$
$e_{s,i+1} = e_{si} + \delta_{si}^e - \sum_{i=1}^{e} \alpha_{ig} q_{sig} - h_{si}^e$	$\forall s \in S, i \in I$
$g \in G$	

Parameters:

 α_{ig} : Download cost (joules/bit)

 δ_{si}^{e} : Net amount of energy acquired (joules)

Sets:

S: Satellites

I: Intervals

G: Ground Stations

Variables:

x_{sig}: Percent of interval used for download

q_{sig}: Amount of data downloaded (bits)

e_{si}: Energy available (joules)

h_{si}e: excess energy spilled

Example of Constraint: Energy Dynamics

- 1) Initialization: energy available at beginning of planning horizon
- 2) Buffer Size: lower and upper bound on stored energy

$$e_{s0} = e_{start} \qquad \forall s \in S$$

$$e_{min} \leq e_{si} \leq e_{max} \qquad \forall s \in S, i \in I$$

$$e_{s,i+1} = e_{si} + \delta_{si}^e - \sum_{g \in G} \alpha_{ig} q_{sig} - h_{si}^e \quad \forall s \in S, i \in I$$

Parameters:

 α_{ig} : Download cost (joules/bit)

 δ_{si}^{e} : Net amount of energy acquired (joules)

Sets:

S: Satellites

I: Intervals

G: Ground Stations

Variables:

x_{sig}: Percent of interval used for download

q_{sig}: Amount of data downloaded (bits)

e_{si}: Energy available (joules)

h_{si}e: excess energy spilled

Example of Constraint: Energy Dynamics

- 1) Initialization: energy available at beginning of planning horizon
- 2) Buffer Size: lower and upper bound on stored energy
- 3) Propagation: recursive equation

$$e_{s0} = e_{start} \qquad \forall s \in S$$

$$e_{min} \leq e_{si} \leq e_{max} \qquad \forall s \in S, i \in I$$

$$e_{s,i+1} = e_{s,i} + \delta^e_{s,i} - \sum_{s} \alpha_{i,s} a_{s,i,s} - h^e_{s,i} \quad \forall s \in S, i \in I$$

$$e_{s,i+1} = e_{si} + \delta_{si}^e - \sum_{g \in G} \alpha_{ig} q_{sig} - h_{si}^e \quad \forall s \in S, i \in I$$

Parameters:

 α_{ig} : Download cost (joules/bit)

 δ_{si}^{e} : Net amount of energy acquired (joules)

Sets:

S: Satellites

I: Intervals

G: Ground Stations

Variables:

 x_{sig} : Percent of interval used for download

q_{sig}: Amount of data downloaded (bits)

e_{si}: Energy available (joules)

h_{si}e: excess energy spilled

What do we want to look at?

 Assess performance of our optimization model compared to other methods

- Evaluate system sensitivity under various scenarios
 - Number of satellites VS Number of ground stations
 - Congestion effects
 - Energy acquisition capabilities

Generating Data for Testing

- Planning horizon is typically one day (100 intervals)
- Contact times are randomly generated
- For each test scenario, 50 random instances are solved and average objective value is computed

Comparison Methods

Greedy Heuristic

- At each point in time
 - Identify maximum possible download for each satellite
 - Schedule the maximum download
 - Repeat until no more feasible downloads

Unrestricted Ground Stations

- Use MMSP formulation, but allow ground stations to receive data from numerous satellites simultaneously
- Example: Deep-Space Network (DSN)

Computational Performance

(20 Satellite, 15 Ground Stations)

Number of Satellites

(with 20 ground stations)

Decreasing marginal benefit of adding new satellites to existing system

Number of Satellites

(with 20 ground stations)

2) MMSP effectiveness decreases in scenarios with very high congestion

Energy Gained Per Interval

Conclusions and Future Work

- 1. Operations Research approach Optimization
- 2. Participate in satellite design and mission development
- 3. Project future mission performance (e.g. QB50)
- 4. Deploy optimization model on operating networks
- 5. Other applications...

Thank You!

Contact info:

jctg@umich.edu amycohn@umich.edu jcutler@umich.edu

We gratefully acknowledge the financial support of: **National Science Foundation** (CNS-1035236) **Air Force Research Laboratory** (FA9550-12-1-0401)

Generating Data for Testing

Table 1: Base Case Model Parameters				
Description	Default Value			
Number of satellites	20			
Number of ground stations	15			
Number of time intervals	100			
Time Interval Length	Uniform			
Uniform	(1,30)			
Prob (see 0 ground stations)	25%			
Prob (see 1 ground station)	25%			
Prob (see 2 ground stations)	25%			
Prob (see 3 ground stations)	25%			
Prob (see 4 ground stations)	0%			
Prob (see 5 ground stations)	0%			

Table 2: Satellite Parameters			
Description	Default Value		
Minimum energy level (joules)	0		
Maximum energy level (joules)	100		
Starting energy level (joules)	e_max		
Maximum data level (bits)	100		
Starting data level (bits)	d_max		
	Normal		
Energy Gain (joules per interval)	(30,15)		
Data Gain (bits per interval)	Normal (10,5)		

Table 3: Ground Station Parameters			
Description	Default Value		
Efficiency Percentage	Normal (1,0.2)		
Data Rate (bits/sec)	Normal (4,2)		
Energy Cost (joules/bit)	Normal (5,2.5)		

Negative values are set to 0, efficiencies greater than 1 are set to 1

