Improving Patient Flow at C.S. Mott Children's Hospital

Vanessa Morales¹, Prof. Amy Cohn¹, Dr. Michelle Macy², Dr. Allison Cator²

¹. Industrial and Operations Engineering, ². Emergency Medicine at Mott Children’s Hospital
University of Michigan
Ann Arbor, MI
Collaborators

Gabriel Zayas-Caban, Ph.D.
Joseph East, IOE MS & MHSA
Fernando Schneidman, IOE
Elizabeth Olin, IOE
Jason Card, IOE MS
Brooke Szymanski, Nursing
Daniel Hazlett, IOE MS
Hassan Abbas, Nursing
Joanna Fleming, IOE MS
Roshun Sankaran, Pre-Med
Stephanie See, BSN
Agenda

• Patient flow: ED and Inpatient Settings
• Asthma Patients
• Neural Networks

• Ongoing and Future Work
Agenda

• Patient flow: ED and Inpatient Settings
• Asthma Patients
• Neural Networks

• Ongoing and Future Work
Patient Flow at Mott

Emergency Department

Observation Protocol

Inpatient Unit

<24

<24

24+

Home

Home
Patient Flow at Mott

• In the ED patients can stay up to 24 hours
• So at the 23rd hour latest, the doctor has to make a disposition decision
 • Admit: send to the inpatient unit
 • Discharge: send them home
• As deadline approaches, it’s harder to make the decision for certain patients
Patient Flow at Mott + Our work

• Main issue: Wrong disposition decision can lead to patient readmissions and inappropriate admissions

• Our work:
 • Help doctors make disposition decisions
 • Use available data to predict disposition decisions
 • Case Study: Asthma Patients
Agenda

• Patient flow: ED and Inpatient Settings
• Asthma Patients
• Neural Networks

• Ongoing and Future Work
Asthma

Chronic Lung Disorder - airway inflammation and constriction

• Causes: allergens, genetics, viruses
• Characteristics: airway edema, accumulation of mucus in the lungs, and bronchoconstriction
• In Children:
 • more prone to respiratory failure than adults
 • Respiratory arrest often precedes cardiac arrest
Why Asthma Patients?

Second leading cause of all pediatric ED visits
Why Asthma?

• Patients are “easier” to identify
• Patients have straightforward list of treatments
• Patients take longer than standard ED visits, possible observation unit candidates
• Clinical collaborator support of Dr. Michelle Macy and Dr. Allison Cator at UMHS
 • Clinical Insights
 • Access to data
Agenda

• Patient flow: ED and Inpatient Settings
• Asthma Patients
• Neural Networks

• Ongoing and Future Work
Neural Networks Intro

- Mathematical way to model how our brain learns
 - Neuron
 - Synapses
- Supervised Machine Learning
- Captures and represents complex nonlinear relationships
Neural Networks

Input Layer
Neural Networks

Input Layer

Hidden layer

W
Neural Networks

Input Layer

Hidden layer

Output Layer

W

W'
Neural Networks

• NN toolbox in **Matlab**
 • Training 70% - used for training
 • Validation 15% - stops training once networks learns
 • Test 15% - not used in training, independent set

• Use network to predict outputs of new data set (~300 samples) and compare with actual outputs
Neural Networks: Data

Input Variables

- Age
- Sex
- Gender
- Race
- Payer
- Acuity Level
- Time of admission
- Medications given
- Rate of Change of Vital Signs: Pulse Oximetry, Temperature, Respiratory Rate, SpO2

June 2012- March 2013
~2,000 samples of respiratory patients
MiChart Mott ED
Neural Networks: Data

“Correct” Disposition Decision
- NN predicted values are continuous
- Threshold of 0.5
- Mapped to binary values
 - 0 - discharge
 - 1 - admit
Results: Neural Network

<table>
<thead>
<tr>
<th>Data “correct”</th>
<th>Discharge</th>
<th>Admit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discharge</td>
<td>93.1%</td>
<td>6.9%</td>
</tr>
<tr>
<td>Admit</td>
<td>55.4%</td>
<td>44.6%</td>
</tr>
</tbody>
</table>
Results: Data Analysis

| Data “correct” | Doctors | | |
|----------------|---------|------------------|
| | Discharge | Admit |
| Discharge | 92.6% | 7.4% |
| Admit | 14.4% | 85.6% |
Results Aggregated

<table>
<thead>
<tr>
<th>Data "correct"</th>
<th>Neural Network</th>
<th>Doctors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Discharge</td>
<td>Admit</td>
</tr>
<tr>
<td>Discharge</td>
<td>93.1%</td>
<td>6.9%</td>
</tr>
<tr>
<td>Admit</td>
<td>55.4%</td>
<td>44.6%</td>
</tr>
</tbody>
</table>
Results

• Doctors are better than our model
• BUT, If model can strongly predict the disposition of the patient, it can aid the admit discharge decision that doctor makes, in real time
• Thus, more appropriate care for the patient
 • Reduce readmissions
 • Reduce inappropriate admissions
Agenda

• Patient flow: ED and Inpatient Settings
• Asthma Patients
• Neural Networks

• Ongoing and Future Work
Next Steps: Neural Networks

• Better input variables to fine tune model
• More data
• Validate with different methods:
 • Regression, find significant variables
• Predict Length of Stay (LOS) as output:
 • Better aid to disposition decision ~ observation unit candidates
Next Steps: Simulation Model

Emergency Department $\xrightarrow{<24}$ Observation Unit $\xrightarrow{<24}$ Inpatient Unit $\xrightarrow{24+}$ Home
Remarks

• Not just for asthma patients, but can look at other populations in the future
Thank you!
Acknowledgements

• C.S. Mott Children's Hospital
• Center for Healthcare Engineering and Patient Safety (CHEPS)
• The Bonder Foundation
• University of Michigan Center for Research on Learning and Teaching (CRLT)
• The TDC Foundation