Optimal Download Scheduling for Satellite Missions

Brian Lemay

University of Michigan 06-02-2014

Co-authors: Prof Amy Cohn, Prof James Cutler, Jeremy Castaing

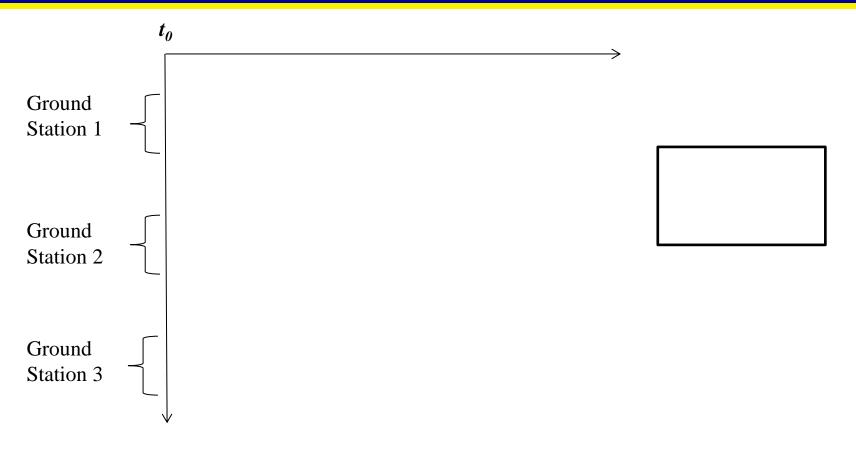
Outline

Goal of the project: Develop a model for quickly and optimally scheduling downloads of a multi-satellite, multi-ground station system.

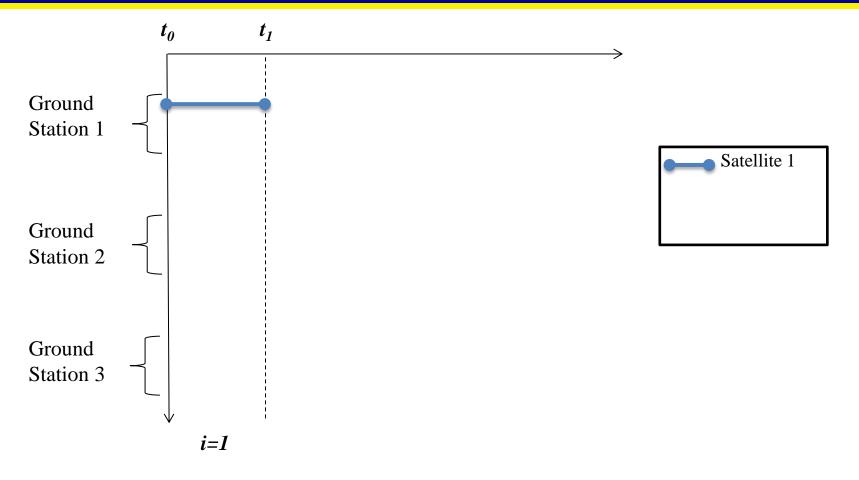
- Description of the problem
- Optimization model
- Computational experiments and results
- Conclusions and future research
- Introduction of stochastic variations

Small Satellites

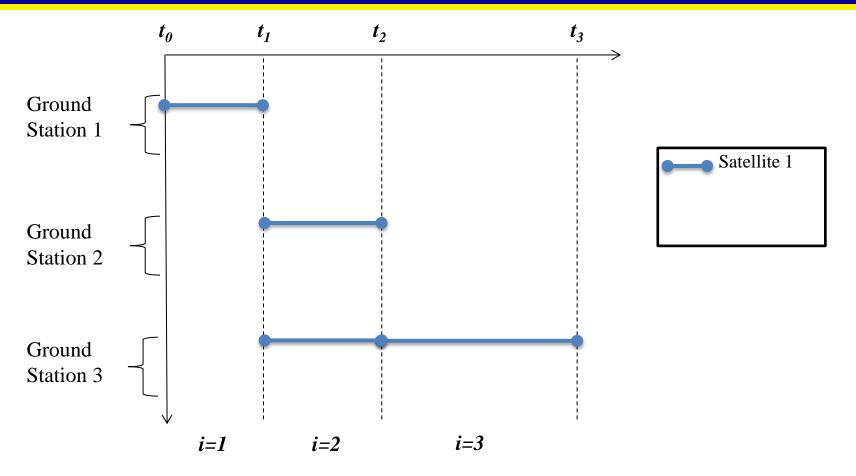
Ground station antenna

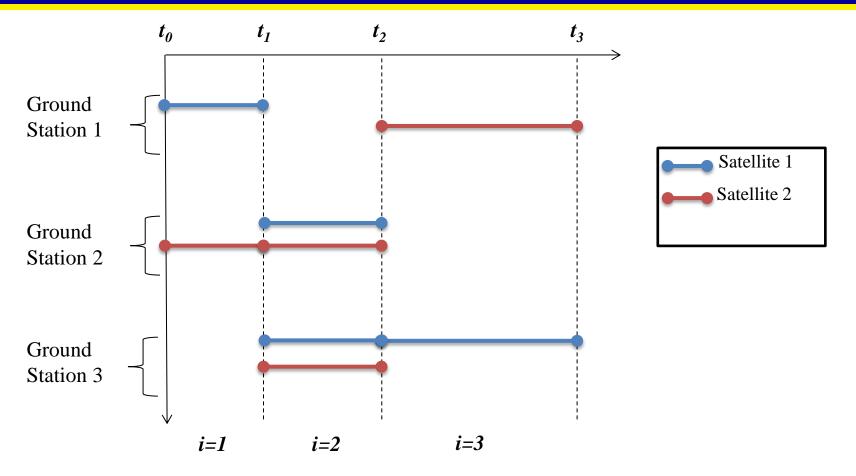

Flock 1: 28 Dove Satellites launched on Feb 11th, 2014

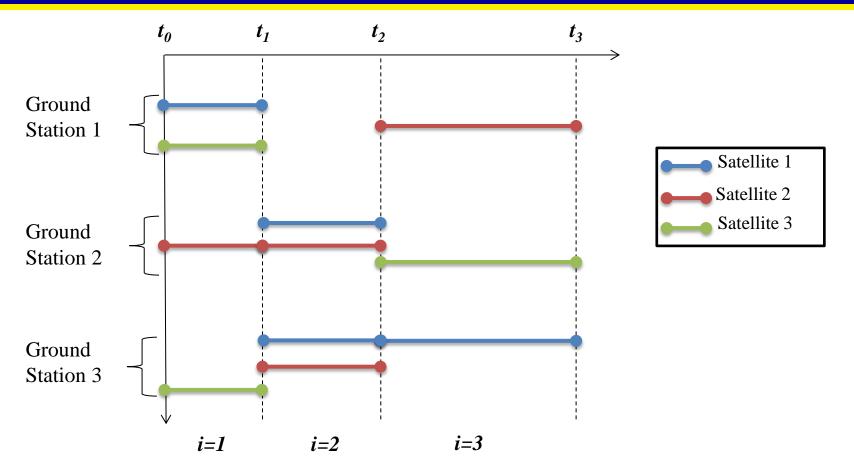
1 - 50 kg Satellite Launches [1]					
Year:	Approx. Launches Per Year:				
2006-2012	25				
2013	92				
2014	140 (estimated)				



- Scheduling data downloads from a satellite constellation to a network of ground stations
- Objective is to maximize the total amount of data downloaded
- Subject to:
 - Energy Dynamics
 - Data Dynamics
 - Energy/Data Limitations
 - Unique Ground Stations:
 - Download Rate (bits/sec)
 - Download Cost (joules/bit)
 - Efficiency (percentage of download actually received)







Model Assumptions

- Planning horizon is discretized into intervals corresponding to download opportunities
- Constant energy and data collection rates
- All parameters known in advance with certainty
- Each satellite can only download to one ground station at a time
- Each ground station can only receive information from one satellite at a time

Download Decisions

- x_{sig} The percentage of interval i that satellite s downloads to ground station g
- q_{sig} The amount of data downloaded from satellite s during interval i to ground station g

Download Decisions

- x_{sig} The percentage of interval i that satellite s downloads to ground station g
- q_{sig} The amount of data downloaded from satellite s during interval i to ground station g

Example Schedule

	Ground Station 1					
	Inter	val 1	Interval 2			
	X	q	X	q		
Satellite 1	40%	2 Mb	0%	0 Mb		

Download Decisions

- x_{sig} The percentage of interval i that satellite s downloads to ground station g
- q_{sig} The amount of data downloaded from satellite s during interval i to ground station g

Example Schedule

	Ground Station 1				
	Interval 1		Interval 2		
	X	q	X	q	
Satellite 1	40%	2 Mb	0%	0 Mb	
Satellite 2	60%	3 Mb	30%	1 Mb	

$$\max \sum_{s \in S} \sum_{i \in I} \sum_{g \in G} \eta_{ig} q_{sig}$$

Objective: Maximize total download over the planning horizon

Parameters:

 $\gamma_{\text{sig}}\text{:}$ Indicator if in view during i

 η_{ig} : Download efficiency (% received)

t_i: Duration of interval (sec)

 ϕ_{ig} : Download rate (bits/sec)

 α_{ig} : Download cost (joules/bit)

 δ_{si}^{e} : net amount of energy acquired (joules)

 $\delta_{si}^{d}\!\!:$ net amount of data acquired (bits)

Variables:

 x_{sig} : Percent of interval used for download

q_{sig}: Amount of data downloaded (bits)

e_{si}: Energy available (joules)

d_{si}: Data available (bits)

h_{si}e: excess energy spilled

$$\max \sum_{s \in S} \sum_{i \in I} \sum_{g \in G} \eta_{ig} q_{sig}$$

$$x_{sig} \leq \gamma_{sig} \qquad \forall s \in S, i \in I, g \in G \qquad (1)$$

Can only download if satellite is in range of ground station

Parameters:

 γ_{sig} : Indicator if in view during i

 η_{ig} : Download efficiency (% received)

t_i: Duration of interval (sec)

 ϕ_{ig} : Download rate (bits/sec)

 α_{ig} : Download cost (joules/bit)

 δ_{si}^{e} : net amount of energy acquired (joules)

 δ_{si}^{d} : net amount of data acquired (bits)

Variables:

x_{sig}: Percent of interval used for download

q_{sig}: Amount of data downloaded (bits)

e_{si}: Energy available (joules)

d_{si}: Data available (bits)

h_{si}e: excess energy spilled

$$\max \sum_{s \in S} \sum_{i \in I} \sum_{g \in G} \eta_{ig} q_{sig}$$

$$x_{sig} \leq \gamma_{sig} \qquad \forall s \in S, i \in I, g \in G \qquad (1)$$

$$\sum_{s \in S} x_{sig} \leq 1 \qquad \forall i \in I, g \in G \qquad (2)$$

Ground stations cannot receive data for more than 100% of each interval

Parameters:

 γ_{sig} : Indicator if in view during i

 η_{ig} : Download efficiency (% received)

t_i: Duration of interval (sec)

 ϕ_{ig} : Download rate (bits/sec)

 α_{ig} : Download cost (joules/bit)

 δ_{si}^{e} : net amount of energy acquired (joules)

 δ_{si}^d : net amount of data acquired (bits)

Variables:

x_{sig}: Percent of interval used for download

q_{sig}: Amount of data downloaded (bits)

e_{si}: Energy available (joules)

d_{si}: Data available (bits)

h_{si}e: excess energy spilled

$$\max \sum_{s \in S} \sum_{i \in I} \sum_{g \in G} \eta_{ig} q_{sig}$$

$$x_{sig} \leq \gamma_{sig} \qquad \forall s \in S, i \in I, g \in G \qquad (1)$$

$$\sum_{s \in S} x_{sig} \leq 1 \qquad \forall i \in I, g \in G \qquad (2)$$

$$\sum_{s \in C} x_{sig} \leq 1 \qquad \forall s \in S, i \in I \qquad (3)$$

Satellites cannot transmit data for more than 100% of each interval

Parameters:

 γ_{sig} : Indicator if in view during i

 η_{ig} : Download efficiency (% received)

t_i: Duration of interval (sec)

 ϕ_{ig} : Download rate (bits/sec)

 α_{ig} : Download cost (joules/bit)

 δ_{si}^{e} : net amount of energy acquired (joules)

 δ_{si}^d : net amount of data acquired (bits)

Variables:

x_{sig}: Percent of interval used for download

q_{sig}: Amount of data downloaded (bits)

e_{si}: Energy available (joules)

d_{si}: Data available (bits)

h_{si}e: excess energy spilled

$$\max \sum_{s \in S} \sum_{i \in I} \sum_{g \in G} \eta_{ig} q_{sig}$$

$$x_{sig} \leq \gamma_{sig} \qquad \forall s \in S, i \in I, g \in G \qquad (1)$$

$$\sum_{s \in S} x_{sig} \leq 1 \qquad \forall i \in I, g \in G \qquad (2)$$

$$\sum_{g \in G} x_{sig} \leq 1 \qquad \forall s \in S, i \in I \qquad (3)$$

$$q_{sig} \leq t_i \phi_{ig} x_{sig} \qquad \forall s \in S, i \in I, g \in G \qquad (4)$$

Download amount is limited by length of interval and download rate

Parameters:

 γ_{sig} : Indicator if in view during i

 η_{ig} : Download efficiency (% received)

t_i: Duration of interval (sec)

 ϕ_{ig} : Download rate (bits/sec)

 α_{ig} : Download cost (joules/bit)

 δ_{si}^{e} : net amount of energy acquired (joules)

 δ_{si}^d : net amount of data acquired (bits)

Variables:

x_{sig}: Percent of interval used for download

q_{sig}: Amount of data downloaded (bits)

e_{si}: Energy available (joules)

d_{si}: Data available (bits)

h_{si}e: excess energy spilled

$$\max \sum_{s \in S} \sum_{i \in I} \sum_{q \in G} \eta_{ig} q_{sig}$$

$$x_{sig} \le \gamma_{sig} \qquad \forall s \in S, i \in I, g \in G \qquad (1)$$

$$x_{sig} \le \gamma_{sig} \qquad \forall s \in I, g \in G \qquad (2)$$

$$\sum_{s \in S} x_{sig} \le 1 \qquad \forall i \in I, g \in G \quad (2)$$

$$\sum_{g \in G} x_{sig} \le 1 \qquad \forall s \in S, i \in I \tag{3}$$

$$q_{sig} \le t_i \phi_{ig} x_{sig}$$
 $\forall s \in S, i \in I, g \in G$ (4)

$$e_{s0} = e_{start} \qquad \forall s \in S \tag{5}$$

Set the initial amount of energy available

Parameters:

 γ_{sig} : Indicator if in view during i

 η_{ig} : Download efficiency (% received)

t_i: Duration of interval (sec)

 ϕ_{ig} : Download rate (bits/sec)

 α_{ig} : Download cost (joules/bit)

 δ_{si}^{e} : net amount of energy acquired (joules)

 δ_{si}^{d} : net amount of data acquired (bits)

Variables:

x_{sig}: Percent of interval used for download

q_{sig}: Amount of data downloaded (bits)

e_{si}: Energy available (joules)

d_{si}: Data available (bits)

h_{si}e: excess energy spilled

$$\max \sum_{s \in S} \sum_{i \in I} \sum_{g \in G} \eta_{ig} q_{sig}$$

$$x_{sig} \leq \gamma_{sig} \qquad \forall s \in S, i \in I, g \in G \qquad (1)$$

$$\sum_{s \in S} x_{sig} \leq 1 \qquad \forall i \in I, g \in G \qquad (2)$$

$$\sum_{g \in G} x_{sig} \leq 1 \qquad \forall s \in S, i \in I \qquad (3)$$

$$q_{sig} \leq t_i \phi_{ig} x_{sig} \qquad \forall s \in S, i \in I, g \in G \qquad (4)$$

$$e_{s0} = e_{start} \qquad \forall s \in S \qquad (5)$$

$$e_{min} \leq e_{si} \leq e_{max} \qquad \forall s \in S, i \in I \qquad (6)$$

Satellites have energy storage limits that are enforced every interval

Parameters:

 $\gamma_{\text{sig}}\text{:}$ Indicator if in view during i

 η_{ig} : Download efficiency (% received)

t_i: Duration of interval (sec)

 ϕ_{ig} : Download rate (bits/sec)

 α_{ig} : Download cost (joules/bit)

 δ_{si}^{e} : net amount of energy acquired (joules)

 δ_{si}^d : net amount of data acquired (bits)

Variables:

 x_{sig} : Percent of interval used for download

q_{sig}: Amount of data downloaded (bits)

e_{si}: Energy available (joules)

d_{si}: Data available (bits)

h_{si}e: excess energy spilled

$$\max \sum_{s \in S} \sum_{i \in I} \sum_{g \in G} \eta_{ig} q_{sig}$$

$$x_{sig} \leq \gamma_{sig} \qquad \forall s \in S, i \in I, g \in G \qquad (1)$$

$$\sum_{s \in S} x_{sig} \leq 1 \qquad \forall i \in I, g \in G \qquad (2)$$

$$\sum_{g \in G} x_{sig} \leq 1 \qquad \forall s \in S, i \in I \qquad (3)$$

$$q_{sig} \leq t_i \phi_{ig} x_{sig} \qquad \forall s \in S, i \in I, g \in G \qquad (4)$$

$$e_{s0} = e_{start} \qquad \forall s \in S \qquad (5)$$

$$e_{min} \leq e_{si} \leq e_{max} \qquad \forall s \in S, i \in I \qquad (6)$$

$$e_{s,i+1} = e_{si} + \delta_{si}^{e} \qquad \forall s \in S, i \in I \qquad (7)$$

Energy available is based on previous energy + energy gained - energy used - any excess energy that must be spilled

Parameters:

 $\gamma_{\text{sig}}\text{:}$ Indicator if in view during i

 η_{ig} : Download efficiency (% received)

t_i: Duration of interval (sec)

 ϕ_{ig} : Download rate (bits/sec)

 α_{ig} : Download cost (joules/bit)

 δ_{si}^{e} : net amount of energy acquired (joules)

 δ_{si}^{d} : net amount of data acquired (bits)

Variables:

 x_{sig} : Percent of interval used for download

q_{sig}: Amount of data downloaded (bits)

e_{si}: Energy available (joules)

d_{si}: Data available (bits)

h_{si}e: excess energy spilled

$$\max \sum_{s \in S} \sum_{i \in I} \sum_{g \in G} \eta_{ig} q_{sig}$$

$$x_{sig} \leq \gamma_{sig} \qquad \forall s \in S, i \in I, g \in G \qquad (1)$$

$$\sum_{s \in S} x_{sig} \leq 1 \qquad \forall i \in I, g \in G \qquad (2)$$

$$\sum_{g \in G} x_{sig} \leq 1 \qquad \forall s \in S, i \in I \qquad (3)$$

$$q_{sig} \leq t_i \phi_{ig} x_{sig} \qquad \forall s \in S, i \in I, g \in G \qquad (4)$$

$$e_{s0} = e_{start} \qquad \forall s \in S \qquad (5)$$

$$e_{min} \leq e_{si} \leq e_{max} \qquad \forall s \in S, i \in I \qquad (6)$$

$$e_{s,i+1} = e_{si} + \delta_{si}^e - \sum_{g \in G} \alpha_{ig} q_{sig} - h_{si}^e \quad \forall s \in S, i \in I$$
 (7)

$$d_{s0} = d_{start} \qquad \forall s \in S \tag{8}$$

Set the initial amount of data available

Parameters:

 γ_{sig} : Indicator if in view during i

η_{ig}: Download efficiency (% received)

t_i: Duration of interval (sec)

 ϕ_{ig} : Download rate (bits/sec)

 α_{ig} : Download cost (joules/bit)

 δ_{si}^{e} : net amount of energy acquired (joules)

 δ_{si}^d : net amount of data acquired (bits)

Variables:

 x_{sig} : Percent of interval used for download

q_{sig}: Amount of data downloaded (bits)

e_{si}: Energy available (joules)

d_{si}: Data available (bits)

h_{si}e: excess energy spilled

$$\max \sum_{s \in S} \sum_{i \in I} \sum_{g \in G} \eta_{ig} q_{sig}$$

$$x_{sig} \leq \gamma_{sig} \qquad \forall s \in S, i \in I, g \in G \qquad (1)$$

$$\sum_{s \in S} x_{sig} \leq 1 \qquad \forall i \in I, g \in G \qquad (2)$$

$$\sum_{g \in G} x_{sig} \leq 1 \qquad \forall s \in S, i \in I \qquad (3)$$

$$q_{sig} \leq t_i \phi_{ig} x_{sig} \qquad \forall s \in S, i \in I, g \in G \qquad (4)$$

$$e_{s0} = e_{start} \qquad \forall s \in S \qquad (5)$$

$$e_{min} \leq e_{si} \leq e_{max} \qquad \forall s \in S, i \in I \qquad (6)$$

$$e_{s,i+1} = e_{si} + \delta^e_{si} \qquad \forall s \in S, i \in I \qquad (7)$$

$$d_{s0} = d_{start} \qquad \forall s \in S \qquad (8)$$

$$0 < d_{si} < d_{max} \qquad \forall s \in S, i \in I \qquad (9)$$

Each satellite has a maximum amount of energy it can store

Parameters:

 γ_{sig} : Indicator if in view during i

 η_{ig} : Download efficiency (% received)

t_i: Duration of interval (sec)

 ϕ_{ig} : Download rate (bits/sec)

 α_{ig} : Download cost (joules/bit)

 δ_{si}^{e} : net amount of energy acquired (joules)

 δ_{si}^{d} : net amount of data acquired (bits)

Variables:

 x_{sig} : Percent of interval used for download

q_{sig}: Amount of data downloaded (bits)

e_{si}: Energy available (joules)

d_{si}: Data available (bits)

h_{si}e: excess energy spilled

$$\max \sum_{s \in S} \sum_{i \in I} \sum_{g \in G} \eta_{ig} q_{sig}$$

$$x_{sig} \leq \gamma_{sig} \qquad \forall s \in S, i \in I, g \in G \qquad (1)$$

$$\sum_{s \in S} x_{sig} \leq 1 \qquad \forall i \in I, g \in G \qquad (2)$$

$$\sum_{g \in G} x_{sig} \leq 1 \qquad \forall s \in S, i \in I \qquad (3)$$

$$q_{sig} \leq t_i \phi_{ig} x_{sig} \qquad \forall s \in S, i \in I, g \in G \qquad (4)$$

$$e_{s0} = e_{start} \qquad \forall s \in S \qquad (5)$$

$$e_{min} \leq e_{si} \leq e_{max} \qquad \forall s \in S, i \in I \qquad (6)$$

$$e_{s,i+1} = e_{si} + \delta_{si}^{e} \qquad \forall s \in S, i \in I \qquad (7)$$

$$d_{s0} = d_{start} \qquad \forall s \in S, i \in I \qquad (7)$$

$$d_{s0} = d_{start} \qquad \forall s \in S, i \in I \qquad (9)$$

$$d_{s,i+1} = d_{si} + \delta_{si}^{d} \qquad \forall s \in S, i \in I \qquad (9)$$

$$d_{s,i+1} = d_{si} + \delta_{si}^{d} \qquad \forall s \in S, i \in I \qquad (10)$$

Data available is based on previous data + data gained - data used - any excess data that must be spilled

Parameters:

 $\gamma_{\text{sig}}\text{:}$ Indicator if in view during i

 η_{ig} : Download efficiency (% received)

t_i: Duration of interval (sec)

 ϕ_{ig} : Download rate (bits/sec)

 α_{ig} : Download cost (joules/bit)

 δ_{si}^{e} : net amount of energy acquired (joules)

 δ_{si}^{d} : net amount of data acquired (bits)

Variables:

 x_{sig} : Percent of interval used for download

q_{sig}: Amount of data downloaded (bits)

e_{si}: Energy available (joules)

d_{si}: Data available (bits)

h_{si}e: excess energy spilled

$$\max \sum_{s \in S} \sum_{i \in I} \sum_{q \in G} \eta_{ig} q_{sig}$$

$$x_{sig} \leq \gamma_{sig} \qquad \forall s \in S, i \in I, g \in G \qquad (1)$$

$$\sum_{s \in S} x_{sig} \leq 1 \qquad \forall i \in I, g \in G \qquad (2)$$

$$\sum_{g \in G} x_{sig} \leq 1 \qquad \forall s \in S, i \in I \qquad (3)$$

$$q_{sig} \leq t_i \phi_{ig} x_{sig} \qquad \forall s \in S, i \in I, g \in G \qquad (4)$$

$$e_{s0} = e_{start} \qquad \forall s \in S \qquad (5)$$

$$e_{min} \leq e_{si} \leq e_{max} \qquad \forall s \in S, i \in I \qquad (6)$$

$$e_{s,i+1} = e_{si} + \delta^e_{si} \qquad \forall s \in S, i \in I \qquad (7)$$

$$d_{s0} = d_{start} \qquad \forall s \in S, i \in I \qquad (7)$$

$$d_{s0} = d_{start} \qquad \forall s \in S, i \in I \qquad (9)$$

$$d_{s,i+1} = d_{si} + \delta^d_{si} \qquad \forall s \in S, i \in I \qquad (9)$$

$$d_{s,i+1} = d_{si} + \delta^d_{si} \qquad \forall s \in S, i \in I \qquad (10)$$

$$0 \leq x_{sig} \leq 1 \qquad \forall s \in S, i \in I, g \in G \qquad (11)$$

Variable limits for percent download

Parameters:

 γ_{sig} : Indicator if in view during i

 η_{ig} : Download efficiency (% received)

t_i: Duration of interval (sec)

 ϕ_{ig} : Download rate (bits/sec)

 α_{ig} : Download cost (joules/bit)

 δ_{si}^{e} : net amount of energy acquired (joules)

 δ_{si}^{d} : net amount of data acquired (bits)

Variables:

x_{sig}: Percent of interval used for download

q_{sig}: Amount of data downloaded (bits)

e_{si}: Energy available (joules)

d_{si}: Data available (bits)

h_{si}e: excess energy spilled

$$\max \sum_{s \in S} \sum_{i \in I} \sum_{g \in G} \eta_{ig} q_{sig}$$

$$\begin{aligned}
x_{sig} &\leq \gamma_{sig} \\
\sum_{s \in S} x_{sig} &\leq 1
\end{aligned} & \forall s \in S, i \in I, g \in G \quad (1) \\
\forall i \in I, g \in G \quad (2)$$

$$\sum_{g \in G} x_{sig} \le 1 \qquad \forall s \in S, i \in I \tag{3}$$

$$q_{sig} \le t_i \phi_{ig} x_{sig}$$
 $\forall s \in S, i \in I, g \in G$ (4)

$$e_{s0} = e_{start} \qquad \forall s \in S \tag{5}$$

$$e_{min} \le e_{si} \le e_{max} \qquad \forall s \in S, i \in I$$
 (6)

$$e_{s,i+1} = e_{si} + \delta_{si}^{e} - \sum_{g \in G} \alpha_{ig} q_{sig} - h_{si}^{e} \quad \forall s \in S, i \in I$$
 (7)

$$d_{s0} = d_{start} \qquad \forall s \in S \tag{8}$$

$$0 \le d_{si} \le d_{max} \qquad \forall s \in S, i \in I \tag{9}$$

$$d_{s,i+1} = d_{si} + \delta_{si}^d$$

$$-\sum_{g \in G} \eta_{i,g} q_{sig} - h_{si}^d \quad \forall s \in S, i \in I$$

$$(10)$$

$$-\sum_{g \in G} \eta_{i,g} q_{sig} - n_{si} \quad \forall s \in S, \ i \in I$$

$$0 \le x_{sig} \le 1 \qquad \forall s \in S, \ i \in I, \ g \in G$$

$$(10)$$

$$q_{sig}, e_{si}, d_{si}, h_{si}^e, h_{si}^d \in \mathbb{R}^+ \qquad \forall s \in S, i \in I, g \in G \quad (12)$$

Parameters:

 γ_{sig} : Indicator if in view during i

η_{ig}: Download efficiency (% received)

t_i: Duration of interval (sec)

 ϕ_{ig} : Download rate (bits/sec)

 α_{ig} : Download cost (joules/bit)

 δ_{si}^{e} : net amount of energy acquired (joules)

 δ_{si}^{d} : net amount of data acquired (bits)

Variables:

 x_{sig} : Percent of interval used for download

q_{sig}: Amount of data downloaded (bits)

e_{si}: Energy available (joules)

d_{si}: Data available (bits)

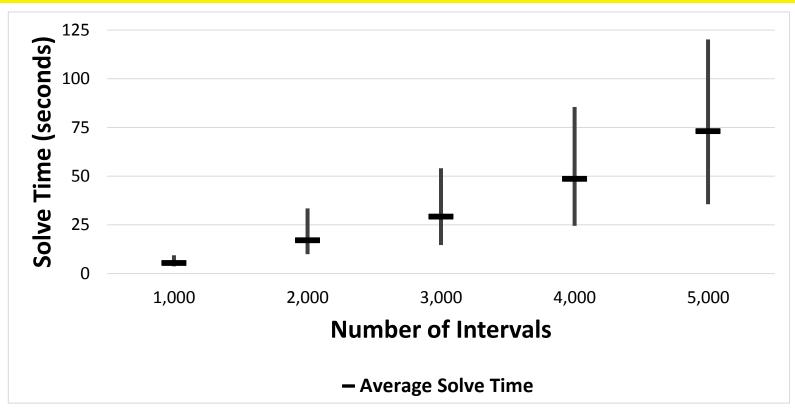
h_{si}e: excess energy spilled

Generating Data for Testing

- 20 Satellites, 15 Ground Stations, 100 Intervals
- 25% chance of 0, 1, 2, or 3 ground stations in view of each satellite for each interval
 - Randomly select the specific ground stations in view
- Energy Gained, Data Gained, Efficiency of G.S., Data Rate, and Energy Cost from Normal Distribution
- For each test scenario, 50 random instances solved

Comparison Methods

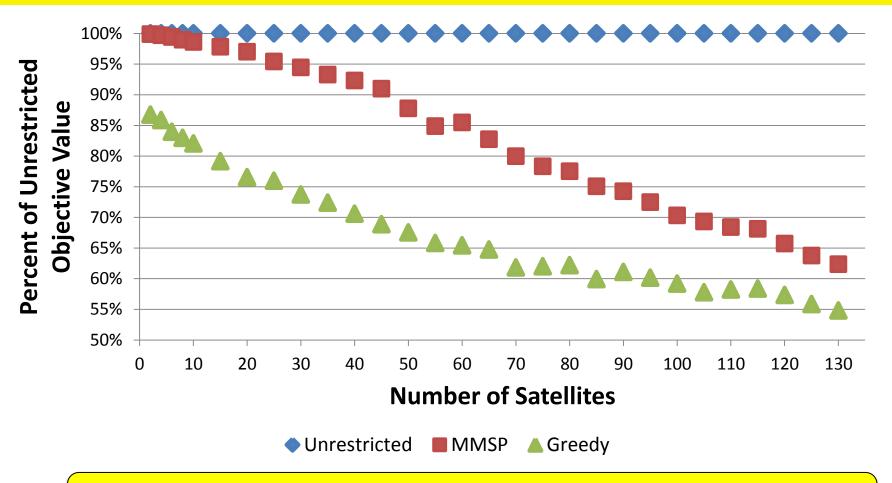
Greedy Heuristic


- Divide each interval into many (200) pieces
- For each piece (starting with the first):
 - Identify maximum possible download for each satellite
 - Schedule the maximum download
 - Repeat until no more feasible downloads
- Repeat process for each interval

Unrestricted Ground Stations

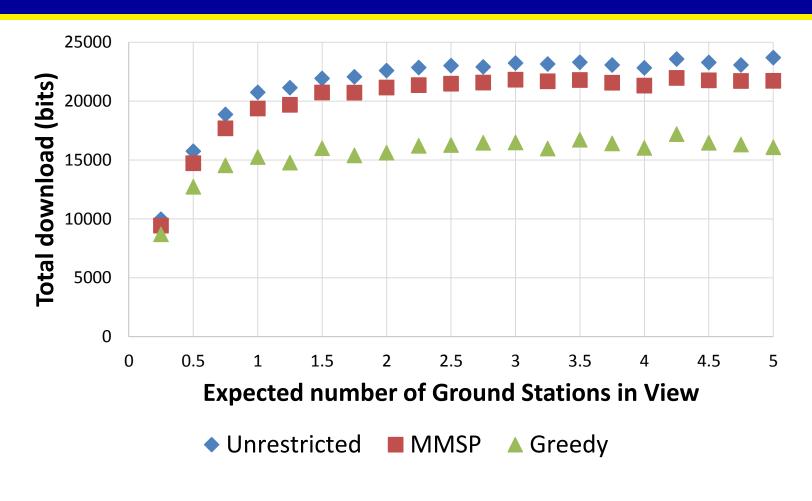
- Use MMSP formulation, but allow ground stations to receive data from numerous satellites simultaneously
- Example: Deep-Space Network (DSN)

Min, Max, and Average Solve Times

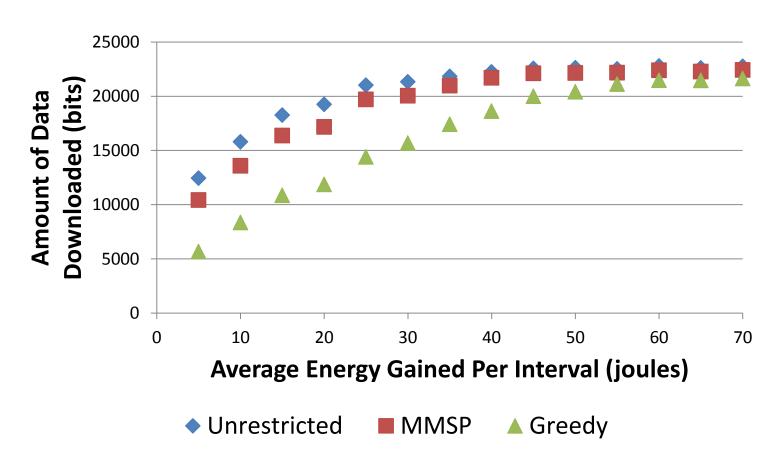


- Programmed in C++ and solved with CPLEX 12.6
- CPU: Intel Xeon E3-1230 quad-core running at 3.20 GHz with hyper-threading and 32 GB of RAM.
- Unrestricted computational times are similar
- Greedy averages 10 sec with 5000 intervals and is less variable

Number of Satellites


(with 20 ground stations)

MMSP is less beneficial over Greedy in scenarios with very high congestion
 Congested systems could benefit from more ground station capacity


Ground Stations in View

(with 20 Satellites)

Energy Gained Per Interval

MMSP Conclusions and Future Work

- Capable of quickly solving real problems with clear benefits over more traditional methods
 - Plan to use a real data set in the future
 - Can use as tool for sensitivity analysis for evaluating system capabilities and bottlenecks
- MMSP adds the most value in scenarios where it's worth waiting for better download opportunities
- Future Work: Stochastic instances, prioritized downloads, fairness of downloads, web-based scheduler for public use

Stochastic Variations

- Sources of uncertainty:
 - Data and energy collection rates
 - Efficiency of the ground stations
 - Availability of ground stations
 - Bernoulli random variable: $x_{gi} = \begin{cases} 1 \text{ with probability } p_{gi} \\ 0 \text{ with probability } 1 p_{gi} \end{cases}$
- Rules of the game:
 - Allow Recourse? (adapt our decision during planning horizon?) *This requires communication with the satellite
 - Lose energy if ground station is not available?
 - Do we have a chance constraint? (e.g. The total amount downloaded must be greater than 50 Mb 90% of the time)

Thank You!

Contact info: blemay@umich.edu

We gratefully acknowledge the financial support of the National Science Foundation (CNS-1035236) and the Air Force Research Laboratory (FA9550-12-1-0401)

