Using Integer Programming to Improve the Scheduling of Medical Residents

Presenter : Elizabeth Perelstein B.S. \& Young-Chae Hong Ph.D. University of Michigan

ISERC Conference 2014
Montreal, Canada

	CHEPS Centerfor
	Healthcare Engineering
Industrial \% OPERATIONS	\& Patient Safety
ENEGEERING	Michigan Engineering

Content

- Background
- U-M Pediatric Emergency Department
- Motivation
- Multi-Criteria Schedule
- Quantifying Preference
- Optimized Residency Scheduling Assistant (ORSA)
- Results
- Future Research

Co-Authors and Current Team Members

- Amy Cohn, Ph.D
- Jennifer Zank, M.D
- Zachary VerSchure
- Edmond O'Brien, M.D
- Gabriel Zayas-Caban, Ph.D
- William Pozehl, B.S.E.
- Daniel Hazlett, B.S.E.
- Peter Mayoros
- Nina Scheinberg
- Hannah Schapiro
- Aaron Cohen

Resident Responsibilities in the U-M Pediatric Emergency Department

- 3-7 year medical training program
- Responsibilities differ by residency year
- Balancing patient care and educational requirements
- In hospital
- Caring for patients
- Teaching medical students
- Learning from attending physicians
- Out of hospital
- Community clinics
- Conferences
- Other educational requirements

Pediatric ED: Scheduling Considerations

- All shifts assigned to a resident
- Appropriate coverage
- e.g. certain shifts require a senior resident
- ACGME rules (similar to ABET for engineering)
- e.g. 10 hour break rule
- Several different residency programs circulate through the ED
- Pediatrics (PED)
- Family practice (FP)
- Emergency medicine (EM)
- And others

Motivation

- Scheduling Residents
- Complicated requirements
- 25 governing rules and preferences
- Educational goals
- Patient care
- Regularization / Safety

	3				1		7	
6			8					2
		1		4		5		
	7				2		4	
2				9				6
	4		3				1	
		5		3		4		
1					6			5
	2		1				3	

- Chief resident formerly built monthly schedule by hand
- Time consuming process: 20-25 hours / month
- Transfer every year: no scheduling experience in July
- Guess and check: errors / tedious correction process

Mixed Integer Programming

Motivation

- Practical Significance

- Poor-quality schedule
- Residents: decreased interest in learning
- Patients: adverse health events
- Expensive for the hospital
- Goals
- Solves for feasible schedule quickly
- Create a good quality schedule with no violations

Quality

 TimeCHEPS
Healthcare Engineering \&Patient Safety
Michigan Engineering

Metrics: Shift Fairness

- Improving total / night shift equity

- Equal opportunities for training
- Improved morale and learning ability

Resident Name	Smith	Jones	Chen	Joe	
Night Shifts Total Shifts	$\mathbf{0 / 7}$	$\mathbf{1 / 7}$	$\mathbf{1 / 7}$	$5 / \mathbf{7}$	
Fairness					

Metrics: Difficult Shift Transitions

- Limit bad sleep patterns and post-clinic shifts
- Improves resident quality of life
- Increases patient safety

Tuesday

Continuity Clinics 7AM - 2PM

CHEPS
Healthcare Engineering \& Patient Safety

Metrics: Difficult Shift Transitions

- Limit bad sleep patterns and post-clinic shifts
- Improves resident quality of life
- Increases patient safety

Bad sleep pattern

Post-Clinic shift
CHEPS
Healthcare Engineering
\&Patient Safety Michigan Engineering

Multi-Criteria Problem

- Multi-Criteria Schedule
- Metrics for UM Pediatric Emergency Department
- Total shift equity (TSE)
- Night shift equity (NSE)
- Minimum bad sleep patterns (BSP)
- Minimum post-clinic shifts (PostCC)

Multi-objective Mathematical Programming

Formulation: Problem Size

- Sets
- R: set of residents
- 15-25 residents
- D: set of days in the schedule
- 35 days
- S: set of shifts
- 8 shifts
- Decision Variables
- Binary: $\boldsymbol{x}_{\text {rds }} \in\{\mathbf{0}, \mathbf{1}\}$
- 1 if resident r works shift s on day d
- O otherwise

| Residents Name | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Smith | Sanchez | Chen | Shah | \ldots | |
| | $27^{\text {th }}$ | \ldots | $1^{\text {st }}$ | \ldots | $3^{\text {st }}$ |
| 7a-4p | Shah | \ldots | | \ldots | |
| 9a-6p | Joe | \ldots | | \ldots | Shah |
| 10a-7p | | \ldots | | \ldots | |
| 12p-9p | Chen | \ldots | | \ldots | Chen |
| 4p-1a | Smith | \ldots | Sanchez | \ldots | |
| 5p-2a | | \ldots | | \ldots | Sanchez |
| 8p-5a | Sanchez | \ldots | Smith | \ldots | Smith |
| 11p-8a | | \ldots | Chen | \ldots | Joe |

Formulation: Constraints

- Constraints (rules/requirements)
- One resident assigned to each shift in the month
- $\sum_{r \in\{\mathrm{all}\}} x_{r d s}=1, \quad \forall d, \forall s$
- Meets shift requests
- $x_{r d s}=0, \forall r, \forall d, s \in\{$ day off, conferences, continuity clinic $\}$
- Ensure resident type appropriate for shift
- $\sum_{r \in\{\mathrm{PED}\}} \sum_{s \in \mathrm{P}} x_{r s d} \geq 1, \forall \mathrm{~d}, \mathrm{P}=\{\{7 \mathrm{a}, 9 \mathrm{a}\},\{4 \mathrm{p}, 5 \mathrm{p}\},\{8 \mathrm{p}, 11 \mathrm{p}\}\}$
- Intern-forbidden shifts
- $\sum_{r \in\{\text { interns }\}} \sum_{d} x_{r s d}=0, \forall s \in\{7 \mathrm{a}, 11 \mathrm{p}\}$
- And others

Formulation: Weighted Sum Method

$\operatorname{Min} \boldsymbol{w}_{\mathbf{1}}(T S E)+\boldsymbol{w}_{\mathbf{2}}(N S E)+\boldsymbol{w}_{\mathbf{3}}($ BSPs $)+\boldsymbol{w}_{\mathbf{4}}($ PostCC $)$
s.t. "rules/requirements"

$$
x_{r d s} \in\{0,1\}
$$

- Weighted Sum Method
- The Chief resident should describe preferences accurately
- Quantifying preferences (w_{i}) is difficult
- Resulting schedule does not match their intentions
- Various measurement unit
- Equity ($\sigma(\mathbf{X}), \operatorname{Max}|\mathbf{X}|, \sum\left|\boldsymbol{X}_{\boldsymbol{i}}-\boldsymbol{X}_{\boldsymbol{j}}\right|, \ldots$)
- Some criteria are subjective and difficult to quantify

Weighted Sum Method: Weights $\left(w_{i}\right)$

- Matching Game

- Chief residents prefer to examine schedules and choose the best solution

Weighted Sum Method: Weights $\left(w_{i}\right)$

- Matching Game

Schedule Number	Measure of TSE	Measure of NSE	Count of PostCC	Count of BSPs
1	2	1	2	0
2	3	0	1	4
3	2	2	0	1
4	4	0	4	0

- Chief residents prefer to examine schedules and choose the best solution

Weighted Sum Method: Weights $\left(w_{i}\right)$

- Matching Game

STEP 1	Weight
TSE	2.00
NSE	1.00
PostCC	4.00
BSPs	3.00

Schedule Number	Measure of TSE	Measure of NSE	Count of PostCC	Count of BSPs
1	2	1	2	0
2	3	0	1	4
3	2	2	0	1
4	4	0	4	0

- Chief residents prefer to examine schedules and choose the best solution

Weighted Sum Method: Weights $\left(w_{i}\right)$

- Matching Game

STEP 1	Weight
TSE	2.00
NSE	1.00
PostCC	
BSPs	3.00

Schedule Number	Measure of TSE	Measure of NSE	Count of PostCC	Count of BSPs
1	2	1	2	0
2	3	0	1	4
3	2	2	0	1
4	4	0	4	0

- Chief residents prefer to examine schedules and choose the best solution

Optimized Residency Scheduling Assistant (ORSA): Metrics Formulation

- Feasibility problem
- Constraint on metrics
min (weighted sum)
s.t. "rules/requirements" $x_{r d s} \in\{0,1\}$
\min (weighted_sum)
s.t. "rules/requirements"
$x_{r d s} \in\{0,1\}$
$L B_{1} \leq($ Equity $) \leq \boldsymbol{U} \boldsymbol{B}_{1}$
$L B_{2} \leq(B S P s) \leq \boldsymbol{U} \boldsymbol{B}_{2}$
$L B_{3} \leq($ PostCC $) \leq \boldsymbol{U} \boldsymbol{B}_{3}$
- Benefits of a feasibility problem
- More flexible
- Faster to solve: < $2 \mathbf{~ s e c}$.
- Given: 35 days / 20 PEDs / 8 shifts

Optimized Residency Scheduling Assistant (ORSA) : Interactive Improvement

- Example output of metrics
- Value (Lower bound, Upper bound)

Resident Name	Number of Shifts	Number of Night Shifts	Number of Post cc	Number of Bad Sleep Templates
Smith	$8(7,9)$	$2(0,10)$	$0(0,1)$	$1(0,1)$
Sanchez	$8(7,10)$	$1(0,10)$	$0(0,1)$	$1(0,1)$
Chen	$8(7,9)$	$5(0,10)$	$1(0,1)$	$1(0,1)$
Shah	$14(13,15)$	$3(0,10)$	$1(0,1)$	$1(0,1)$
\vdots	\vdots	\vdots	\vdots	\vdots

- Interactive approach engaging chief resident
- Iteratively adjust bounds on metric constraints
- Quickly build high quality schedule

ORSA Methodology

Results: Completion Time

- Schedule made by hand (2010-2011)
- Per schedule: 20-25 hours

	3				1		7	
6			8					2
		1		4		5		
	7				2		4	
2				9				6
	4		3				1	
		5		3		4		
1					6			5
	2		1				3	

- Schedule generated by ORSA (2012-2013)
- Per iteration: < 2 sec
- Per schedule: < 1 hour

Results: Shift Fairness

\square 2010-2011
(Without ORSA)
\square 2012-2013 (With ORSA)

Results: Difficult Shift Transitions

Next Steps

- Myopic Solution

- The most preferred solution is "most preferred" in relation to what he/she has seen and compare so far

| $\substack{\text { Ais good } \\ \text { enough }}$ | TSE | NSE | BSPs | PCCs |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

CHEPS
Center for
Healthcare Engineering
\&Patient Safety
Michigan Engineering

Next Steps

- Myopic Solution

- The most preferred solution is "most preferred" in relation to what he/she has seen and compare so far

- Generate better schedules of the problem

CHEPS
Healthcare Engineering \&Patient Safety
Michigan Engineering

Acknowledgements

- Thank you to CHEPS, TDC Foundation, the Bonder Foundation, and Dr. Brian Jordan, Dr. Micah Long and Dr. Jenny Zank for making this research possible.

Thank You!

CHEPS
Healthcare Engineering
\&Patient Safety
Michigan Engineering

