Using Integer Programming to Improve the Scheduling of Medical Residents

Presenter : Elizabeth Perelstein B.S. & Young-Chae Hong Ph.D. University of Michigan

> ISERC Conference 2014 Montreal, Canada

CHEPS Healthcare Engineering & Patient Safety MICHIGAN ENGINEERING

Content

- Background
 - U-M Pediatric Emergency Department
- Motivation
 - Multi-Criteria Schedule
 - Quantifying Preference
- Optimized Residency Scheduling Assistant (ORSA)
- Results

Co-Authors and Current Team Members

- Amy Cohn, Ph.D
- Jennifer Zank, M.D
- Zachary VerSchure
- Edmond O'Brien, M.D
- Gabriel Zayas-Caban, Ph.D
- William Pozehl, B.S.E.
- Daniel Hazlett, B.S.E.
- Peter Mayoros
- Nina Scheinberg
- Hannah Schapiro
- Aaron Cohen

Resident Responsibilities in the U-M Pediatric Emergency Department

- 3-7 year medical training program
 - Responsibilities differ by residency year
- Balancing patient care and educational requirements
 - In hospital
 - Caring for patients
 - Teaching medical students
 - Learning from attending physicians
 - Out of hospital
 - Community clinics
 - Conferences
 - Other educational requirements

Pediatric ED: Scheduling Considerations

- All shifts assigned to a resident
- Appropriate coverage
 - e.g. certain shifts require a senior resident
- ACGME rules (similar to ABET for engineering)
 - e.g. 10 hour break rule
- Several different residency programs circulate through the ED
 - Pediatrics (PED)
 - Family practice (FP)
 - Emergency medicine (EM)
- And others

Motivation

- Scheduling Residents
 - Complicated requirements
 - 25 governing rules and preferences
 - Educational goals
 - Patient care
 - Regularization / Safety

- Chief resident formerly built monthly schedule by hand
 - Time consuming process: 20 25 hours / month
 - Transfer every year: no scheduling experience in July
 - Guess and check: errors / tedious correction process

Mixed Integer Programming

Motivation

Practical Significance

- Poor-quality schedule
 - Residents: decreased interest in learning
 - Patients: adverse health events
- Expensive for the hospital
- Goals
 - Solves for feasible schedule quickly
 - Create a good quality schedule with no violations

Metrics: Shift Fairness

- Improving total / night shift equity
 - Equal opportunities for training
 - Improved morale and learning ability

Metrics: Difficult Shift Transitions

- Limit bad sleep patterns and post-clinic shifts
 - Improves resident quality of life
 - Increases patient safety

Metrics: Difficult Shift Transitions

- Limit bad sleep patterns and post-clinic shifts
 - Improves resident quality of life
 - Increases patient safety

Multi-Criteria Problem

- Multi-Criteria Schedule
 - Metrics for UM Pediatric Emergency Department
 - Total shift equity (TSE)
 - Night shift equity (NSE)
 - Minimum bad sleep patterns (BSP)
 - Minimum post-clinic shifts (PostCC)

Multi-objective Mathematical Programming

Formulation: Problem Size

Sets

- R: set of residents
 - 15-25 residents
- D: set of days in the schedule
 - 35 days
- S: set of shifts
 - 8 shifts

Decision Variables

- Binary: $x_{rds} \in \{0, 1\}$
 - 1 if resident r works shift s on day d
 - 0 otherwise

Smith									
Jinti	Sanch	ez	Chen	Sha	h				
	27 th	•••	1 st	•••	31 st				
7a-4p	Shah								
9a-6p	Joe				Shah				
10a-7p			>						
12p-9p	Chen				Chen				
4p-1a	Smith		Sanchez						
5p-2a					Sanchez				
8p-5a	Sanchez		Smith		Smith				
11p-8a			Chen		Joe				

Center for

Formulation: Constraints

- Constraints (rules/requirements)
 - One resident assigned to each shift in the month
 - $\sum_{r \in \{\text{all}\}} x_{rds} = 1$, $\forall d, \forall s$
 - Meets shift requests
 - $x_{rds} = 0$, $\forall r, \forall d, s \in \{\text{day off, conferences, continuity clinic}\}$
 - Ensure resident type appropriate for shift
 - $\sum_{r \in \{\text{PED}\}} \sum_{s \in P} x_{rsd} \ge 1, \forall d, P = \{\{7a, 9a\}, \{4p, 5p\}, \{8p, 11p\}\}$
 - Intern-forbidden shifts
 - $\sum_{r \in \{\text{interns}\}} \sum_d x_{rsd} = 0, \forall s \in \{7a, 11p\}$
 - And others

Formulation: Weighted Sum Method

 $\begin{array}{ll} \operatorname{Min} w_1(TSE) + w_2(NSE) + w_3(BSPs) + w_4(PostCC) \\ \text{s.t.} & \text{"rules/requirements"} \\ & x_{rds} \in \{0,1\} \end{array}$

- Weighted Sum Method
 - The Chief resident should describe preferences accurately
- Quantifying preferences (*w_i*) is difficult
 - Resulting schedule does not match their intentions
 - Various measurement unit
 - Equity ($\sigma(\mathbf{X})$, Max $|\mathbf{X}|$, $\sum |X_i X_j|$, ...)
 - Some criteria are subjective and difficult to quantify

Chief residents prefer to examine schedules and choose the best solution

lacksquare

Chief residents prefer to examine schedules and choose the best solution

Chief residents prefer to examine schedules and choose the best solution

lacksquare

Chief residents prefer to examine schedules and choose the best solution

Optimized Residency Scheduling Assistant (ORSA): Metrics Formulation

Feasibility problem

Constraint on metrics

min (weighted sum) s. t. "rules/requirements" $x_{rds} \in \{0,1\}$ $\begin{array}{l} \min \left(\begin{array}{c} \textbf{weighted sum} \right) \\ s. t. \ "rules/requirements" \\ x_{rds} \in \{0,1\} \\ LB_1 \leq (Equity) \leq UB_1 \\ LB_2 \leq (BSPs) \leq UB_2 \\ LB_3 \leq (PostCC) \leq UB_3 \\ \vdots \end{array}$

- Benefits of a feasibility problem
 - More flexible
 - Faster to solve: < 2 sec.</p>
 - Given: 35 days / 20 PEDs / 8 shifts

Optimized Residency Scheduling Assistant (ORSA) : Interactive Improvement

Example output of metrics

Value (Lower bound, Upper bound)

Resident Name	Number of Shifts	Number of Night Shifts	Number of Post CC	Number of Bad Sleep Templates
Smith	8 (7,9)	2 (0,10)	0 (0,1)	1 (0,1)
Sanchez	8 (7,10)	1 (0,10)	0 (0,1)	1 (0,1)
Chen	8 (7,9)	5 (0,10)	1 (0,1)	1 (0,1)
Shah	14 (13,15)	3 (0,10)	1 (0,1)	1 (0,1)
÷	÷	÷	:	:

- Interactive approach engaging chief resident
 - Iteratively adjust bounds on metric constraints
 - Quickly build high quality schedule

ORSA Methodology

Results: Completion Time

- Schedule made by hand (2010-2011)
 - Per schedule: 20 25 hours

- Schedule generated by ORSA (2012-2013)
 - Per iteration: < 2 sec</p>
 - Per schedule: < 1 hour</p>

Results: Shift Fairness

UNIVERSITY OF MICHIGAN

MICHIGAN ENGINEERING

Results: Difficult Shift Transitions

Next Steps

Myopic Solution

The most preferred solution is "most preferred" in relation to what he/she has seen and compare so far

Next Steps

Myopic Solution

The most preferred solution is "most preferred" in relation to what he/she has seen and compare so far

C and B is better than A		TSE	NSE	BSPs	PCCs
	Schedule A	5	4	2	1
	Schedule B	4	4	1	1
+	Schedule C	5	3	2	0

- Generate better schedules of the problem $f_{2(x)}$

Acknowledgements

 Thank you to CHEPS, TDC Foundation, the Bonder Foundation, and Dr. Brian Jordan, Dr. Micah Long and Dr. Jenny Zank for making this research possible.

Thank You!

