Medical Residency Annual Block Scheduling

William Pozehl
Amy Cohn

May 21, 2017
IISE Annual Meeting | Pittsburgh, PA
Presentation outline

1. Motivation
2. Model
3. Solution approach
4. Conclusions
Annual block scheduling

Assignment of residents to services for advanced training and patient care delivery

Resident educational requirements
specialty, seniority, professional goals, etc.

Service coverage demands
patient mix, competencies, oversight, etc.

Construction process requires **coordination** across many stakeholders but typically **built by hand**
Interdependent programs

- **Pediatrics** [Peds]
 - 3-year program
 - 72 residents
 - 15 services

- **Medicine-Pediatrics** [MP]
 - 4-year program
 - 33 residents
 - 8 services [8 Peds + 37 IM]

- **Internal Medicine** [IM]
 - 3-year program
 - 140 residents
 - 84 services
Research objective

Develop a decision support system to enable fast construction of block schedules while improving schedule quality
Presentation outline

1. Motivation
2. Model
3. Solution approach
4. Conclusions
Model parameters

Sets

\(R \): set of residents
\(S \): set of services
\(T \): set of time periods
\(A \): set of activities

Decision variables

\(x_{rst} = \begin{cases} 1, & \text{if assigning resident } r \text{ to service } s \text{ during time period } t \\ 0, & \text{otherwise} \end{cases} \)

\(y_{rat} = \begin{cases} 1, & \text{if assigning resident } r \text{ to start activity } a \text{ during time period } t \\ 0, & \text{otherwise} \end{cases} \)
Constraints

Basic assignment
\[\sum_{s \in S} x_{rst} = 1, \quad \forall r \in R, t \in T \]

Rotation duration
\[x_{rst} - \sum_{a \in A: s(a)=s} \sum_{p \in \{\text{max}(0, t-d_a+1), t\}} y_{rap} = 0, \quad \forall r \in R, s \in S, t \in T \]

Service coverage
\[L \leq \sum_{r \in R'} \sum_{s \in S'} \sum_{t \in T'} x_{rst} \leq U, \quad \forall (R', S', T') \in C \]

Resident education
\[\lambda \leq \sum_{s \in S'} \sum_{t \in T'} x_{rest} \leq \mu, \quad \forall e \in E, (S', T') \in e \]

Service sequencing
\[0 \leq \sum_{i=0}^{t-1} \sum_{s \in A^*} x_{rsi} - x_{r\beta t}, \quad \forall t \in \{1, \ldots, |T| - 1\} \]

Service spacing
\[y_{rAt} + \sum_{i=t+d_A}^{\min(t+d_A+g-1, T-1)} y_{rBi} \leq 1, \quad \forall t \in \{0, \ldots, |T| - 1 - d_A\} \]

Pre-assignments
\[x_{rnsntn} = 1, \quad \forall n \in N \]

Prohibitions
\[x_{rosoto} = 0, \quad \forall o \in O \]
Metrics

1. Undesirable assignments
2. Burnout-risk sequences
3. Ambulatory credit targets
4. Graduation conflicts
5. Fellowship interview conflicts
6. Nth priority requests denied (1st – 12th)
7. And more…
Objective

No obvious objective function but **numerous metrics** important to consider

Work through optimizing metrics **hierarchically** as determined by program leadership
Presentation outline

1. Motivation
2. Model
3. Solution approach
4. Conclusions
Problem size

Integrated model
 245 residents
 107 services
 24 time periods
 122 valid activities

Total Variables 1,346,520
Total Constraints 1,992,897
Solve Time > 8 hrs
Improvement strategies

1. Decompose senior and intern scheduling
2. Sequential scheduling
3. Two-stage IM scheduling
4. Warm-starting solver
Sequential scheduling

Option A

Schedule Peds + MP

Unlock part of MP schedule

Schedule IM + MP

Option B

Schedule IM + MP

Unlock part of MP schedule

Schedule Peds + MP
Observations

Option A generates schedules faster than Option B

Option B produces better schedules than Option A
Two-stage IM scheduling

Stage 1
Aggregate like services with composite educational requirements and service demands

Stage 2
Decompose aggregated services and apply individualized requirements and demands
Observations

Stage 1 reduces to **manageable** size

Stage 2 solves **rapidly** – typically in less than 1 minute
Warm-starting solver

1. Add subset of constraints to model
2. Solve model
3. Generate MIP warm start file
4. Repeat steps 1-3 until all constraints added
1. Motivation

2. Model

3. Solution approach

4. Conclusions
Impact

Introduced **coordinated** scheduling of all 3 programs

Enabled greater **specificity** of scheduling needs compared to manual construction

Improved **satisfaction** (relative to prior years) regarding:
- resident requests
- schedule fairness
- elective/research matching
- pacing and challenging rotation sequences
- fellowship interview and graduation conflicts
Ongoing work

Speed
Evaluating alternative formulations for impact on solve time

Quality
Implementing additional metrics based on leadership feedback

Efficiency
Streamlining administrative and schedule revision processes
Acknowledgements

Thanks to the chief residents and program directors who have collaborated with us

Thanks to the students who have built this tool

Special thanks for the generous support from

MICHIGAN MEDICINE
Seth Bonder Foundation
Questions and comments

Thank you!

Contact Information:
William Pozehl | pozewil@umich.edu
Amy Cohn | amycohn@umich.edu