A Monte Carlo Optimization Framework for Solving the Colonoscopy Scheduling Problem under Uncertainty

Karmel Shehadeh, PhD Candidate
Professor Amy Cohn

Department of Industrial and Operations Engineering
Center for Healthcare Engineering and Patient Safety
University of Michigan, Ann Arbor

July 20, 2017
IFORS 2017 | Quebec City
Research Team

- Systems Concepts for the Optimization and Personalization of Endoscopy Scheduling (SCOPES) Team:
 - Amy Cohn, Professor, Industrial and Operations Engineering
 - Dr. Sameer Saini and Dr. Jacob Kurlander, University of Michigan School of Medicine, University of Michigan Health System
 - CHEPS Students
Presentation Overview

1. Introduction and Motivation
2. The Offline Stochastic Colonoscopy Scheduling Problem (OSCSP)
3. Solution Approach: Monte Carlo Optimization
4. Numerical Example
5. Conclusion and Future Directions
Presentation Overview

1. Introduction and Motivation

2. The Offline Stochastic Colonoscopy Scheduling (OSCSP)

3. Solution Approach: Monte Carlo Optimization

4. Numerical Example

5. Conclusion and Future Directions
Colonoscopy Procedure

- The most common screening test for Colorectal Cancer (CRC)
 - 2nd leading cause of cancer-related death in the US\(^1\)
 - 4.5 million age-eligible subjects in the US (≥ 50 years)\(^2\)

\(^1\) American Cancer Society
\(^2\) Jiang et al. (2015)
Colonoscopy Procedure

- The most common screening test for Colorectal Cancer (CRC)
 - 2nd leading cause of cancer-related death in the US\(^1\)
 - 4.5 million age-eligible subjects in the US \((\geq 50\) years)\(^2\)

- Medical procedure, usually performed by a gastroenterologist, allows for direct visual examination of the entire colon and rectum
 - **Spot** existing cancer, prompting treatment
 - **Prevent** future cancer (polyps)

\(^1\) American Cancer Society
\(^2\) Jiang et al. (2015)
Colonoscopy Procedure

- The most common screening test for Colorectal Cancer (CRC)
 - 2nd leading cause of cancer-related death in the US\(^1\)
 - 4.5 million age-eligible subjects in the US \((\geq 50\) years)\(^2\)

- Medical procedure, usually performed by a gastroenterologist, allows for direct visual examination of the entire colon and rectum
 - **Spot** existing cancer, prompting treatment
 - **Prevent** future cancer (polyps)

- Can help **reduce** CRC incidence by about **40%** and **mortality** by about **50%\(^1\)**

\(^1\) American Cancer Society\]
\(^2\) Jiang et al. (2015)
Challenges to Daily Colonoscopy Schedule

- **Significant variability** in procedure duration due to quality of the pre-procedure bowel prep

<table>
<thead>
<tr>
<th>Prep Quality</th>
<th>Type-Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good</td>
<td>Easy-Short</td>
</tr>
<tr>
<td>Poor</td>
<td>Complex-Long</td>
</tr>
</tbody>
</table>
Challenges to Daily Colonoscopy Schedule

- **Significant variability** in procedure duration due to quality of the pre-procedure bowel prep

<table>
<thead>
<tr>
<th>Prep Quality</th>
<th>Type-Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good</td>
<td>Easy-Short</td>
</tr>
<tr>
<td>Poor</td>
<td>Complex-Long</td>
</tr>
</tbody>
</table>

- Patient absenteeism, lack of punctuality, and cancellations
Challenges to Daily Colonoscopy Schedule

- **Significant variability** in procedure duration due to quality of the pre-procedure bowel prep

<table>
<thead>
<tr>
<th>Prep Quality</th>
<th>Type-Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good</td>
<td>Easy-Short</td>
</tr>
<tr>
<td>Poor</td>
<td>Complex-Long</td>
</tr>
</tbody>
</table>

- Patient absenteeism, lack of punctuality, and cancellations

- **Multiple** and **conflicting** criteria that affect the quality of the schedule
 - Patient waiting, provider idle and over times
 - Patient access to screening and appointment time preferences (future talk)
Challenges to Daily Colonoscopy Schedule

- Significant variability in procedure duration due to quality of the pre-procedure bowel prep

<table>
<thead>
<tr>
<th>Prep Quality</th>
<th>Type-Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good</td>
<td>Easy-Short</td>
</tr>
<tr>
<td>Poor</td>
<td>Complex-Long</td>
</tr>
</tbody>
</table>

- Patient absenteeism, lack of punctuality, and cancellations

- Multiple and conflicting criteria that affect the quality of the schedule
 - Patient waiting, provider idle and over times
 - Patient access to screening and appointment time preferences (future talk)
Research Goal

- Develop a decision support tool to optimize colonoscopy appointment scheduling
 - A list of daily appointment slots to offer for patients (template)
 - Instructions for scheduling patients (scheduling policies)
Presentation Overview

1. Introduction and Motivation

2. The Offline Stochastic Colonoscopy Scheduling (OSCSP)

3. Solution Approach: Monte Carlo Optimization

4. Numerical Example

5. Conclusion and Future Directions
Problem Statement

Setup:

- A set of P patients, each of a \textit{known type}
- Colonoscopy duration, patient arrival, and patient attendance are \textit{random} variables
Problem Statement

Setup:

- A set of \(P \) patients, each of a *known type*
- Colonoscopy duration, patient arrival, and patient attendance are *random variables*
 - Each has a *known distribution*, is *independent* of scheduled time and from other patients
 - Observed on the *day of services* after the appointment decisions are made
Problem Statement

Setup:

- A set of P patients, each of a **known type**
- Colonoscopy duration, patient arrival, and patient attendance are **random variables**
 - Each has a **known distribution**, is **independent** of scheduled time and from other patients
 - Observed on the **day of services** after the appointment decisions are made

Goal:

- Find **optimal scheduling decisions** for this set of patients, that minimizes a **convex combination of the expected** total patients **waiting** time expected total provider **idle** and **over** times
OSCSP Formulation

\[v_\Omega = \min f_\Omega \]

\[\text{s.t.} \]

\[\sum_{\omega \in \Omega} \phi(\omega) \]
\[\lambda WP \sum_{i=1} \left(s_{\omega i} - a_{\omega i} \right) + \lambda TP \sum_{i=1} g_{\omega i} + \lambda O o_{\omega} \]

\[t_i \geq 0 \quad \forall i \in P \] (very patient is assigned to one appointment slot)

\[\sum_{p=1} x_{ip} = 1 \quad \forall p \in P \] (one patient is assigned to every appointment slot)

\[s_{\omega i} \geq a_{\omega i} \quad \forall i \in P, \omega \in \Omega \] (arrival time = scheduled ± unpunctuality)

\[s_{\omega i} \geq s_{\omega i} - 1 + \sum_{p=1} \tau_{\omega p} \cdot x_{i-1,p} \quad \forall i = 2, \ldots, P, \omega \in \Omega \] (start = max (arrival time, completion time of prev procedure))

\[g_{\omega i} \geq a_{\omega i} + 1 - \left(s_{\omega i} + \sum_{p=1} \tau_{\omega p} \cdot x_{i,p} \right) \quad \forall i < P, \omega \in \Omega \] (idle time after the \(i \)th patient)

\[o_{\omega} \geq \left(s_{\omega P} + \sum_{j=1} \tau_{\omega j} \cdot x_{P,j} \right) - L \quad \forall \omega \in \Omega \] (overtime incurred to complete the last procedure)

\[g_{\omega i} \geq 0 \quad \forall i \in P, \omega \in \Omega \]

\[s_{\omega i} \geq 0 \quad \forall i \in P, \omega \in \Omega \]

\[o_{\omega} \geq 0 \quad \forall \omega \in \Omega \]
OSCSP Formulation

\[v_\Omega = \min f_\Omega \]

\[\sum_{i=1}^{P} x_{ip} = 1 \quad \forall p \in P \] (very patient is assigned to one appointment slot)

\[\sum_{p=1}^{P} x_{ip} = 1 \quad \forall i \in P \] (one patient is assigned to every appointment slot)
OSCSP Formulation

OSCSP \(v_\Omega = \min f_\Omega \)

\[s.t. \quad \sum_{i=1}^{P} x_{ip} = 1 \quad \forall p \in P \]

(very patient is assigned to one appointment slot)

\[\sum_{p=1}^{P} x_{ip} = 1 \quad \forall i \in P \]

(one patient is assigned to every appointment slot)

\[t_i \geq 0 \quad \forall i \in P \]

\[a_\omega^i = t_i + \sum_{p=1}^{P} u_p^\omega \cdot x_{ip} \quad \forall i \in P, \omega \in \Omega \]

(arrival time = scheduled ± unpunctuality)
The Offline Stochastic Colonoscopy Scheduling (OSCSP)

OSCSP Formulation

OSCSP \(v_\Omega = \min f_\Omega \)

s.t. \(\sum_{i=1}^{P} x_{ip} = 1 \quad \forall p \in P \) (very patient is assigned to one appointment slot)

\(\sum_{p=1}^{P} x_{ip} = 1 \quad \forall i \in P \) (one patient is assigned to every appointment slot)

\(t_i \geq 0 \quad \forall i \in P \)

\(a_i^\omega = t_i + \sum_{p=1}^{P} u_p^\omega \cdot x_{ip} \quad \forall i \in P, \omega \in \Omega \) (arrival time = scheduled ± unpunctuality)

\(s_i^\omega \geq a_i^\omega \quad \forall i \in P, \omega \in \Omega \) (start = max (arrival time, completion time of prev procedure))

\(s_i^\omega \geq s_{i-1}^\omega + \sum_{p=1}^{P} \tau_p^\omega \cdot x_{i-1,p} \quad \forall i = 2, \ldots, P, \omega \in \Omega \) (start = max (arrival time, completion time of prev procedure))
OSCSP Formulation

\[\text{OSCSP} \quad v_\Omega = \min f_\Omega \]

\[
\begin{align*}
\text{s.t.} \quad & \sum_{i=1}^{P} x_{ip} = 1 \quad \forall p \in P \quad \text{(very patient is assigned to one appointment slot)} \\
& \sum_{p=1}^{P} x_{ip} = 1 \quad \forall i \in P \quad \text{(one patient is assigned to every appointment slot)} \\
& t_i \geq 0 \quad \forall i \in P \\
& a^\omega_i = t_i + \sum_{p=1}^{P} u^\omega_p \cdot x_{ip} \quad \forall i \in P, \omega \in \Omega \quad \text{(arrival time= scheduled ± unpunctuality)} \\
& s^\omega_i \geq a^\omega_i \quad \forall i \in P, \omega \in \Omega \quad \text{(start = max (arrival time, completion time of prev procedure))} \\
& s^\omega_i \geq s^\omega_{i-1} + \sum_{p=1}^{P} \tau^\omega_p \cdot x_{i-1,p} \quad \forall i = 2, ..., P, \omega \in \Omega \quad \text{(start = max (arrival time, completion time of prev procedure))} \\
& g^\omega_i \geq a^\omega_{i+1} - (s^\omega_i + \sum_{p=1}^{P} \tau^\omega_p \cdot x_{i,p}) \quad \forall i < P, \omega \in \Omega \quad \text{(idle time after the } i\text{th patient)}
\end{align*}
\]
OSCSP Formulation

OSCSP \[v_\Omega = \min f_\Omega \]

s.t. \[\sum_{i=1}^{P} x_{ip} = 1 \quad \forall p \in P \] (very patient is assigned to one appointment slot)

\[\sum_{p=1}^{P} x_{ip} = 1 \quad \forall i \in P \] (one patient is assigned to every appointment slot)

\[t_i \geq 0 \quad \forall i \in P \]

\[a^\omega_i = t_i + \sum_{p=1}^{P} u^\omega_p \cdot x_{ip} \quad \forall i \in P, \omega \in \Omega \] (arrival time = scheduled ± unpunctuality)

\[s^\omega_i \geq a^\omega_i \quad \forall i \in P, \omega \in \Omega \] (start = max (arrival time, completion time of prev procedure))

\[s^\omega_i \geq s^\omega_{i-1} + \sum_{p=1}^{P} \tau^\omega_p \cdot x_{i-1,p} \quad \forall i = 2, ..., P, \omega \in \Omega \] (start = max (arrival time, completion time of prev procedure))

\[g^\omega_i \geq a^\omega_{i+1} - (s^\omega_i + \sum_{p=1}^{P} \tau^\omega_p \cdot x_{i,p}) \quad \forall i < P, \omega \in \Omega \] (idle time after the \(i \)th patient)

\[o^\omega \geq (s^\omega_P + \sum_{j=1}^{P} \tau^\omega_j \cdot x_{P,j}) - \mathcal{L} \quad \forall \omega \in \Omega \] (overtime incurred to complete the last procedure)
OSCSP Formulation

\[v_\Omega = \min f_\Omega \]

s.t. \[\sum_{i=1}^{P} x_{ip} = 1 \quad \forall p \in P \] (very patient is assigned to one appointment slot)

\[\sum_{p=1}^{P} x_{ip} = 1 \quad \forall i \in P \] (one patient is assigned to every appointment slot)

\[t_i \geq 0 \quad \forall i \in P \]

\[a_{i}^\omega = t_i + \sum_{p=1}^{P} u_{p}^\omega \cdot x_{ip} \quad \forall i \in P, \omega \in \Omega \] (arrival time = scheduled ± unpunctuality)

\[s_{i}^\omega \geq a_{i}^\omega \quad \forall i \in P, \omega \in \Omega \] (start = max (arrival time, completion time of prev procedure))

\[s_{i}^\omega \geq s_{i-1}^\omega + \sum_{p=1}^{P} \tau_{p}^\omega \cdot x_{i-1,p} \quad \forall i = 2, \ldots, P, \omega \in \Omega \] (start = max (arrival time, completion time of prev procedure))

\[g_{i}^\omega \geq a_{i+1}^\omega - (s_{i}^\omega + \sum_{p=1}^{P} \tau_{p}^\omega \cdot x_{i,p}) \quad \forall i < P, \omega \in \Omega \] (idle time after the \(i \)th patient)

\[o^\omega \geq (s_{P}^\omega + \sum_{j=1}^{P} \tau_{j}^\omega \cdot x_{P,j}) - \mathcal{L} \quad \forall \omega \in \Omega \] (overtime incurred to complete the last procedure)

\[g_{i}^\omega \geq 0 \quad \forall i \in P, \omega \in \Omega \]

\[s_{i}^\omega \geq 0 \quad \forall i \in P, \omega \in \Omega \]

\[o^\omega \geq 0 \quad \forall \omega \in \Omega \]

\[x_{i,p} \in \{0,1\} \]
OSCSP Formulation

\[v_{\Omega} = \min f_{\Omega} := \sum_{\omega \in \Omega} \phi(\omega) \left[\lambda^W \sum_{i=1}^{P} (s_i^\omega - a_i^\omega) + \lambda^T \sum_{i=1}^{P} g_i^\omega + \lambda^O o^\omega \right] \]

s.t. \[\sum_{i=1}^{P} x_{ip} = 1 \quad \forall p \in P \] (very patient is assigned to one appointment slot)

\[\sum_{p=1}^{P} x_{ip} = 1 \quad \forall i \in P \] (one patient is assigned to every appointment slot)

\[t_i \geq 0 \quad \forall i \in P \]

\[a_i^\omega = t_i + \sum_{p=1}^{P} u_p^\omega \cdot x_{ip} \quad \forall i \in P, \omega \in \Omega \] (arrival time= scheduled ± unpunctualityality)

\[s_i^\omega \geq a_i^\omega \quad \forall i \in P, \omega \in \Omega \] (start = max (arrival time, completion time of prev procedure))

\[s_i^\omega \geq s_{i-1}^\omega + \sum_{p=1}^{P} \tau_{i,p}^\omega \cdot x_{i-1,p} \quad \forall i = 2, \ldots, P, \omega \in \Omega \] (start = max (arrival time, completion time of prev procedure))

\[g_i^\omega \geq a_{i+1}^\omega - (s_i^\omega + \sum_{p=1}^{P} \tau_{i,p}^\omega \cdot x_{i,p}) \quad \forall i < P, \omega \in \Omega \] (idle time after the \(i \)th patient)

\[o^\omega \geq (s_P^\omega + \sum_{j=1}^{P} \tau_{j,P}^\omega \cdot x_{P,j}) - \mathcal{L} \quad \forall \omega \in \Omega \] (overtime incurred to complete the last procedure)

\[g_i^\omega \geq 0 \quad \forall i \in P, \omega \in \Omega \]

\[s_i^\omega \geq 0 \quad \forall i \in P, \omega \in \Omega \]

\[o^\omega \geq 0 \quad \forall \omega \in \Omega \]

\[x_{i,p} \in \{0, 1\} \]
OSCSP Formulation

\begin{align*}
\text{OSCSP} \quad v_\Omega = \min \ f_\Omega := \sum_{\omega \in \Omega} \phi(\omega) & \left[\lambda^W \sum_{i=1}^{P} (s^\omega_i - a^\omega_i) + \lambda^T \sum_{i=1}^{P} g^i_\omega + \lambda^O o^\omega \right] \\
\text{s.t.} \quad (X, t) & \quad \text{(planned schedule)} \\
(a^\omega, s^\omega, g^\omega, o^\omega) & \quad \text{(actual schedule)}
\end{align*}
OSCSP Formulation

\begin{align*}
\text{OSCSP} & \quad v_\Omega = \min f_\Omega := \sum_{\omega \in \Omega} \phi(\omega) \left[\lambda^W \sum_{i=1}^{P} (s_i^\omega - a_i^\omega) + \lambda^T \sum_{i=1}^{P} g_i^\omega + \lambda^O o^\omega \right] \\
\text{s.t.} & \quad (X, t) \quad \text{(planned schedule)} \\
& \quad (a^\omega, s^\omega, g^\omega, o^\omega) \quad \text{(actual schedule)}
\end{align*}

Input Parameters?
Colonoscopy Duration Model

<table>
<thead>
<tr>
<th>Prep Quality</th>
<th>Type-Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good</td>
<td>Easy-Short</td>
</tr>
<tr>
<td>Poor</td>
<td>Complex-Long</td>
</tr>
</tbody>
</table>

- Clinical Observations at the University of Michigan Medical Procedure Unit
Colonoscopy Duration Model

<table>
<thead>
<tr>
<th>Prep Quality</th>
<th>Type-Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good</td>
<td>Easy-Short</td>
</tr>
<tr>
<td>Poor</td>
<td>Complex-Long</td>
</tr>
</tbody>
</table>

- Clinical Observations at the University of Michigan Medical Procedure Unit
- **Type-Duration** likelihood α
Colonoscopy Duration Model

<table>
<thead>
<tr>
<th>Prep Quality</th>
<th>Type-Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good</td>
<td>Easy-Short</td>
</tr>
<tr>
<td>Poor</td>
<td>Complex-Long</td>
</tr>
</tbody>
</table>

- Clinical Observations
- Type-duration likelihood α
- Continuous
Colonoscopy Duration Model

<table>
<thead>
<tr>
<th>Prep Quality</th>
<th>Type-Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good</td>
<td>Easy-Short</td>
</tr>
<tr>
<td>Poor</td>
<td>Complex-Long</td>
</tr>
</tbody>
</table>

- Clinical Observations
- Type-duration likelihood α
- Continuous
 - e.g., if complex, then duration $\sim f(\cdot)^{long}$ with α probability or $\sim f(\cdot)^{short}$ with $1 - \alpha$
Colonoscopy Duration Model (example)

<table>
<thead>
<tr>
<th>Type</th>
<th>Lowest Observed Duration (LOD)</th>
<th>Frequently Observed Duration</th>
<th>Highest Observed Duration (HOD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Good</td>
<td></td>
<td>30</td>
<td>75</td>
</tr>
</tbody>
</table>

- Clinical Observations
- Type-duration likelihood α

- Continuous
 - e.g., if complex, then duration $\sim f(\cdot)^{long}$ with α probability or $\sim f(\cdot)^{short}$ with $1 - \alpha$
Colonoscopy Duration Model (example)

<table>
<thead>
<tr>
<th>Type</th>
<th>Lowest Observed Duration (LOD)</th>
<th>Frequently Observed Duration</th>
<th>Highest Observed Duration (HOD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short</td>
<td>20</td>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>Good</td>
<td>60</td>
<td>75</td>
<td>120</td>
</tr>
</tbody>
</table>

- Clinical Observations
- Type-duration likelihood α

- Continuous
 - e.g., if complex, then duration $\sim f(\cdot)^{long}$ with α probability or $\sim f(\cdot)^{short}$ with $1 - \alpha$
Colonoscopy Duration Model (example)

<table>
<thead>
<tr>
<th>Type</th>
<th>Lowest Observed Duration (LOD)</th>
<th>Frequently Observed Duration</th>
<th>Highest Observed Duration (HOD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short</td>
<td>20</td>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>Good</td>
<td>60</td>
<td>75</td>
<td>120</td>
</tr>
</tbody>
</table>

- Clinical Observations
- Type-duration likelihood α
- Continuous
 - e.g., if complex, then duration $\sim f(\cdot)^{long}$ with α probability or $\sim f(\cdot)^{short}$ with $1 - \alpha$

$$\star \left| N(\mu_l(s), \sigma^2_l(s)) \right|$$
Colonoscopy Duration Model (example)

<table>
<thead>
<tr>
<th>Type</th>
<th>Lowest Observed Duration (LOD)</th>
<th>Frequently Observed Duration</th>
<th>Highest Observed Duration (HOD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short</td>
<td>20</td>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>Good</td>
<td>60</td>
<td>75</td>
<td>120</td>
</tr>
</tbody>
</table>

- Clinical Observations
- Type-duration likelihood α
- Continuous

 - e.g., if complex, then duration $\sim f(\cdot)^{long}$ with α probability or $\sim f(\cdot)^{short}$ with $1 - \alpha$

\[
\star |N(\mu_l(s), \sigma^2_l(s))| \\
\star \sigma_l(s) = \frac{HOD-LOD}{6}
\]
Colonoscopy Duration Model (example)

<table>
<thead>
<tr>
<th>Type</th>
<th>Lowest Observed Duration (LOD)</th>
<th>Frequently Observed Duration</th>
<th>Highest Observed Duration (HOD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short</td>
<td>20</td>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>Good</td>
<td>60</td>
<td>75</td>
<td>120</td>
</tr>
</tbody>
</table>

- Clinical Observations
- Type-duration likelihood α
- Continuous
 - e.g., if complex, then duration $\sim f(\cdot)^{long}$ with α probability or $\sim f(\cdot)^{short}$ with $1 - \alpha$

\[
\begin{align*}
\star & |N(\mu_{l(s)}, \sigma_{l(s)}^2)| \\
\star & \sigma_{l(s)} = \frac{HOD - LOD}{6} \\
\star & f^{short} = |N(30, 6.67^2)|
\end{align*}
\]
Colonoscopy Duration Model (example)

<table>
<thead>
<tr>
<th>Type</th>
<th>Lowest Observed Duration (LOD)</th>
<th>Frequently Observed Duration</th>
<th>Highest Observed Duration (HOD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short</td>
<td>20</td>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>Good</td>
<td>60</td>
<td>75</td>
<td>120</td>
</tr>
</tbody>
</table>

- Clinical Observations
- Type-duration likelihood α
- Continuous

 - e.g., if complex, then duration $\sim f(\cdot)^{long}$ with α probability or $\sim f(\cdot)^{short}$ with $1 - \alpha$

 $$\star | N(\mu_l(s), \sigma^2_{l(s)}) |$$

 $$\star \sigma_l(s) = \frac{HOD - LOD}{6}$$

 $$\star f^{short} = | N(30, 6.67^2) |$$

 $$\star f^{long} = | N(75, 10^2) |$$
So, we’ve got a HUGE number of scenarios

\[v_\Omega = \min f_\Omega := \sum_{\omega \in \Omega} \phi(\omega) \left[\lambda^W \sum_{i=1}^{P} (s_i^\omega - a_i^\omega) + \lambda^T \sum_{i=1}^{P} g_i^\omega + \lambda^O o^\omega \right] \]
So, we’ve got a HUGE number of scenarios

OSCSP $v_\Omega = \min f_\Omega := \sum_{\omega \in \Omega} \phi(\omega) \left[\lambda^W \sum_{i=1}^{P} (s^\omega_i - a^\omega_i) + \lambda^T \sum_{i=1}^{P} g^\omega_i + \lambda^O o^\omega \right]$ Computationally Expensive!!!
The Offline Stochastic Colonoscopy Scheduling (OSCSP)

So, we’ve got a HUGE number of scenarios

\[v_\Omega = \min f_\Omega := \sum_{\omega \in \Omega} \phi(\omega) \left[\lambda^W \sum_{i=1}^{P} (s_i^{\omega} - a_i^{\omega}) + \lambda^T \sum_{i=1}^{P} g_i^{\omega} + \lambda^O o^{\omega} \right] \quad \text{Computationally Expensive!!!} \]

Question: Are there any qualifications for an efficient solution method?

Practice: a modest sample size to solve the model within a reasonable time that the clinic manager is happy with

Theory: a large number of scenarios to provide a good approximation to the true optimal schedule with reasonable accuracy that we, the “ORes”, are happy with

Sample Schedule converges w.p.1 as \(N \to \infty \) \(\rightarrow \) True Optimal Schedule
So, we’ve got a HUGE number of scenarios

OSCSP \[v_\Omega = \min_{\omega \in \Omega} f_\omega := \sum_{\omega \in \Omega} \phi(\omega) \left[\lambda^W \sum_{i=1}^{P} (s_i^\omega - a_i^\omega) + \lambda^T \sum_{i=1}^{P} g_i^\omega + \lambda^O o^\omega \right] \quad \text{Computationally Expensive!!!} \]

Question : Are there any qualifications for an efficient solution method?

Short answer: YES!
So, we’ve got a HUGE number of scenarios

OSCSP & $v_\Omega = \min f_\Omega := \sum_{\omega \in \Omega} \phi(\omega) \left[\lambda^W \sum_{i=1}^{P} (s_i^\omega - a_i^\omega) + \lambda^T \sum_{i=1}^{P} g_i^\omega + \lambda^O o^\omega \right]$ & Computationally Expensive!!!

Question: Are there any qualifications for an efficient solution method?

Short answer: YES!

Longer answer: Sample Average Problem

OSCSP(N) & $v_N = \min f_N := \sum_{n=1}^{N} \frac{1}{N} \left[\lambda^W \sum_{i=1}^{P} (s_i^n - a_i^n) + \lambda^T \sum_{i=1}^{P} g_i^n + \lambda^O o^n \right]$

Practice: A modest sample size to solve the model within a reasonable time that the clinic manager is happy with

Theory: A large number of scenarios to provide a good approximation to the true optimal schedule with reasonable accuracy that we, the “ORes”, are happy with

Sample Schedule $\xrightarrow{\text{converges w.p.1}}$ as $N \rightarrow \infty$ $\xrightarrow{\text{True Optimal Schedule}}$
So, we’ve got a HUGE number of scenarios

OSCSP \[v_\Omega = \min_{\omega \in \Omega} f_\Omega := \sum_{\omega \in \Omega} \phi(\omega) \left[\lambda^W \sum_{i=1}^{P} (s_i^{\omega} - a_i^{\omega}) + \lambda^T \sum_{i=1}^{P} g_i^{\omega} + \lambda^O o^\omega \right] \quad \text{Computationally Expensive!!!} \]

Question: Are there any qualifications for an efficient solution method?

Short answer: YES!

Longer answer: Sample Average Problem

OSCSP(N) \[v_N = \min_{\Omega} f_N := \sum_{n=1}^{N} \frac{1}{N} \left[\lambda^W \sum_{i=1}^{P} (s_i^n - a_i^n) + \lambda^T \sum_{i=1}^{P} g_i^n + \lambda^O o^n \right] \]

Practice: a modest sample size to solve the model within a reasonable time that the clinic manager is happy with
The Offline Stochastic Colonoscopy Scheduling (OSCSP)

So, we’ve got a HUGE number of scenarios

OSCSP \(v_{\Omega} = \min_{\omega \in \Omega} f_{\Omega} := \sum_{\omega \in \Omega} \phi(\omega) \left[\lambda^W \sum_{i=1}^{P} (s_i^\omega - a_i^\omega) + \lambda^T \sum_{i=1}^{P} g_i^\omega + \lambda^O o^\omega \right] \) Computationally Expensive!!!

Question : Are there any qualifications for an efficient solution method?

Short answer: YES!

Longer answer: Sample Average Problem

OSCSP(N) \(v_N = \min f_N := \sum_{n=1}^{N} \frac{1}{N} \left[\lambda^W \sum_{i=1}^{P} (s_i^n - a_i^n) + \lambda^T \sum_{i=1}^{P} g_i^n + \lambda^O o^n \right] \)

Practice: a modest sample size to solve the model within a reasonable time that the clinic manager is happy with

Theory: a large number of scenarios to provide a good approximation to the true optimal schedule with reasonable accuracy that we, the “ORes”, are happy with

Sample Schedule \(\xrightarrow{\text{converges w.p.1. as } N \to \infty} \) True Optimal Schedule
Solution Approach: Monte Carlo Optimization

Presentation Overview

1. Introduction and Motivation
2. The Offline Stochastic Colonoscopy Scheduling (OSCSP)
3. Solution Approach: Monte Carlo Optimization
4. Numerical Example
5. Conclusion and Future Directions
So, a sample of 1,000 scenarios is large enough?
So, a sample of 1,000 scenarios is large enough?

Here is a simple recipe:

STEP 1. Generate 1,000 scenarios
STEP 2. Solve the sample average problem
\[\text{OSCSP}^{1000} = 1000 \sum_{n=1}^{N} \left[\lambda WP \sum_{i=1}^{I} (s_{ni} - a_{ni}) + \lambda TP \sum_{i=1}^{I} g_{ni} + \lambda O \right] \]
(s. t. (X, t) (planned schedule) (a, s, g, o) (actual schedule))
STEP 3. Test the performance of the optimized schedule (X, t) for 10,000 days
3.1 Each day record waiting, idle and over times
3.2 Calculate \[v_{10,000} \] the average of the resulting 10,000 metrics values
If \[v_{10,000} \] and \[v_{1000} \] are relatively close, then YES; otherwise seek a larger sample.

That's all there is to Naive Monte Carlo Optimization!
So, a sample of 1,000 scenarios is large enough?

Here is a simple recipe:

STEP 1. Generate 1,000 scenarios

\[
\text{STEP 2.} \quad \text{Solve the sample average problem}
\]

\[
\text{OSCSP}^\text{v_{1000}} = \frac{1}{1000} \sum_{n=1}^{1000} \left[\lambda \text{WP} \sum_{i=1}^{n} (s_{ni} - a_{ni}) + \lambda \text{TP} \sum_{i=1}^{n} g_{ni} + \lambda \text{o} \text{o}_n \right]
\]

(a Lower bound on Expected Performance)

\[
\text{STEP 3.} \quad \text{Test the performance of the optimized schedule } (X, t) \text{ for 10,000 days}
\]

3.1 Each day record waiting, idle and over times

3.2 Calculate \(v_{10,000}\), the average of the resulting 10,000 metrics values

If \(v_{10,000}\) and \(v_{1000}\) are relatively close, then **YES**; otherwise seek a larger sample.

That's all there is to Naive Monte Carlo Optimization!
So, a sample of 1,000 scenarios is large enough?

Here is a simple recipe:

STEP 1. Generate 1,000 scenarios

STEP 2. Solve the sample average problem

\[
OSCSP_{1000} = \frac{1}{1000} \sum_{n=1}^{1000} \left[\lambda^W \sum_{i=1}^{P} (s^n_i - a^n_i) + \lambda^T \sum_{i=1}^{P} g^n_i + \lambda^O o^n \right] \quad \text{(a Lower bound on Expected Performance)}
\]

s.t. \((X, t)\) (planned schedule)

\((a^n, s^n, g^n, o^n)\) (actual schedule)
So, a sample of 1,000 scenarios is large enough?

Here is a simple recipe:

STEP 1. Generate 1,000 scenarios

STEP 2. Solve the sample average problem

\[
\text{OSCSP} \quad v_{1000} := \sum_{n=1}^{1000} \frac{1}{1000} \left[\lambda^W \sum_{i=1}^{P} (s^n_i - a^n_i) + \lambda^T \sum_{i=1}^{P} g^n_i + \lambda^O o^n \right] \quad (\text{a Lower bound on Expected Performance})
\]

s.t. (\(X, t\)) (planned schedule)

\((a^n, s^n, g^n, o^n)\) (actual schedule)

STEP 3. Test the performance of the optimized schedule \((X, t)\) for 10,000 days

3.1 Each day record waiting, idle and over times

3.2 Calculate \(v_{10,000}\) the average of the resulting 10,000 metrics values
So, a sample of 1,000 scenarios is large enough?

Here is a simple recipe:

STEP 1. Generate 1,000 scenarios

STEP 2. Solve the sample average problem

\[
\text{OSCSP} \quad v_{1000} = \sum_{n=1}^{1000} \frac{1}{1000} \left[\lambda^W \sum_{i=1}^{P} (s^W_i - a^W_i) + \lambda^T \sum_{i=1}^{P} g^T_i + \lambda^O o^n \right] \quad \text{(a Lower bound on Expected Performance)}
\]

\[
\text{s.t.} \quad (X, t) \quad \text{(planned schedule)}
\]

\[
(a^n, s^n, g^n, o^n) \quad \text{(actual schedule)}
\]

STEP 3. Test the performance of the optimized schedule \((X,t)\) for 10,000 days

3.1 Each day record waiting, idle and over times

3.2 Calculate \(v_{10,000}\) the average of the resulting 10,000 metrics values

If \(v_{10,000}\) and \(v_{1000}\) are relatively close, then **YES**; otherwise seek a larger sample
So, a sample of 1,000 scenarios is large enough?

Here is a simple recipe:

STEP 1. Generate 1,000 scenarios

STEP 2. Solve the sample average problem

\[
\text{OSCSP} \quad v_{1000} = \sum_{n=1}^{1000} \frac{1}{1000} \left[\lambda^W \sum_{i=1}^{P} (s_i^n - a_i^n) + \lambda^T \sum_{i=1}^{P} g_i^n + \lambda^O o^n \right] \quad \text{(a Lower bound on Expected Performance)}
\]

s.t. \((X, t)\) \quad \text{(planned schedule)}

\((a^n, s^n, g^n, o^n)\) \quad \text{(actual schedule)}

STEP 3. Test the performance of the optimized schedule \((X, t)\) for 10,000 days

3.1 Each day record waiting, idle and over times

3.2 Calculate \(v_{10,000}\) the average of the resulting 10,000 metrics values

If \(v_{10,000}\) and \(v_{1000}\) are relatively close, then **YES**; otherwise seek a larger sample

That’s all there is to Naive Monte Carlo Optimization!
A Smarter Monte Carlo Optimization Recipe

for each candidate sample size $N \in \{1, 5, \ldots\}$ do

Step 1. Generate a sample of size N - for each patient p, generate N scenarios of no-show probability, duration, and punctuality

Step 2. Solve Sample Average Problem (OSCSP(N)) with the generated sample in step 1
Let $v_m N$ be the corresponding optimal objective value

Step 3. Evaluation of the true objective function using Monte Carlo simulation
3.1 Generate another N scenarios of P patients, solve OSCSP(N), and obtain an optimal schedule (X_m, t_m)
3.2 Generate $N' \gg N$ scenarios of P patients
3.2 Estimate $\hat{v}_m N'$, the true value of the objective function ($\hat{v}_m N'$) using the schedule (X_m, t_m)

end

OSCSP(N) Solution Quality:
Compute a lower and upper bound on the full problem, with all scenarios, objective function by taking the average of $v N$ and \hat{v}_N', respectively, overall replications

$v N = \frac{1}{M} \sum_{m=1}^{M} v_m N$

$v N' = \frac{1}{M} \sum_{m=1}^{M} \hat{v}_m N'$

Compute (Approximate) optimality index

$AOI = \frac{v N'}{v N}$

Stopping Rule:
N is large enough to obtain a high quality schedule
If $AOI \leq$ threshold, BREAK;
A Smarter Monte Carlo Optimization Recipe

for each candidate sample size $N \in \{1, 5, \ldots\}$ do
 for $m=1:M$ do
 Step 1. Generate a sample of size N - for each patient p, generate N scenarios of no-show probability, duration, and punctuality
 Step 2. Solve Sample Average Problem (OSCSP(N)) with the generated sample in step 1
 Let v_m^N be the corresponding optimal objective value
 Step 3. Evaluation of the true objective function using Monte Carlo simulation
 3.1 Generate another N scenarios of P patients, solve OSCSP(N), and obtain an optimal schedule (X_m, t_m)
 3.2 Generate N' scenarios of P patients
 3.2 Estimate \hat{v}_m^N, the true value of the objective function (\hat{v}_m^N) using the schedule (X_m, t_m)
 end
end

OSCSP(N) Solution Quality:
Compute a lower and upper bound on the full problem, with all scenarios, objective function by taking the average of v_m^N and \hat{v}_m^N, respectively, overall replications

$v_N = \frac{1}{M} \sum_{m=1}^{M} v_m^N$
$v_N' = \frac{1}{M} \sum_{m=1}^{M} \hat{v}_m^N$

Compute (Approximate) optimality index

$AOI = \frac{v_N'}{v_N}$

Stopping Rule:
N is large enough to obtain a high quality schedule
If $AOI \leq$ threshold, BREAK;
A Smarter Monte Carlo Optimization Recipe

for each candidate sample size $N \in \{1, 5, \ldots\}$ do
 for $m=1:M$ do
 \begin{itemize}
 \item \textbf{Step 1.} Generate a sample of size N
 - for each patient p, generate N scenarios of no-show probability, duration, and punctuality
 \end{itemize}
 end
end

OSCSP(N) Solution Quality:
Compute a lower and upper bound on the full problem, with all scenarios, objective function by taking the average of v_{N} and \hat{v}_{N}', respectively, overall replications

\[v_{N} = \frac{1}{M} \sum_{m=1}^{M} v_{N} \]
\[v_{N}' = \frac{1}{M} \sum_{m=1}^{M} \hat{v}_{N}' \]

Compute (Approximate) optimality index
\[AOI = \frac{v_{N}'}{v_{N}} \]

Stopping Rule:
If $AOI \leq \text{threshold}$, BREAK;
A Smarter Monte Carlo Optimization Recipe

for each candidate sample size $N \in \{1, 5, \ldots\}$ do
 for $m=1:M$ do
 Step 1. Generate a sample of size N
 - for each patient p, generate N scenarios of no-show probability, duration, and punctuality
 Step 2. Solve Sample Average Problem ($OSCSP(N)$) with the generated sample in step 1
 Let v^m_N be the corresponding optimal objective value
 end
end

OSCSP(N) Solution Quality:
Compute a lower and upper bound on the full problem, with all scenarios, objective function by taking the average of v^m_N and $\hat{v}^m_{N'}$, respectively, overall replications

$v_N = \frac{1}{M} \sum_{m=1}^{M} v^m_N$
$v_{N'} = \frac{1}{M} \sum_{m=1}^{M} \hat{v}^m_{N'}$

Compute (Approximate) optimality index

$AOI = \frac{v_N'}{v_N}$

Stopping Rule:
N is large enough to obtain a high quality schedule
If $AOI \leq$ threshold, BREAK;
A Smarter Monte Carlo Optimization Recipe

for each candidate sample size $N \in \{1, 5, \ldots\}$ do
 for $m=1:M$ do
 \begin{itemize}
 \item \textbf{Step 1.} Generate a sample of size N
 \begin{itemize}
 \item for each patient p, generate N scenarios of no-show probability, duration, and punctuality
 \end{itemize}
 \item \textbf{Step 2.} Solve Sample Average Problem (OSCSP(N)) with the generated sample in step 1
 \begin{itemize}
 \item Let v^m_N be the corresponding optimal objective value
 \end{itemize}
 \item \textbf{Step 3.} Evaluation of the true objective function using Monte Carlo simulation
 \begin{itemize}
 \item 3.1 Generate a another N scenarios of P patients, solve OSCSP(N), and obtain an optimal schedule (X^m, t^m)
 \item 3.2 Generate $N' >> N$ scenarios of P patients
 \item 3.2 Estimate $\hat{v}^m_{N'}$, the true value of the objective function $(\hat{v}^m_{N'})$ using the schedule (X^m, t^m)
 \end{itemize}
 \end{itemize}
 end
end

OSCSP(N) Solution Quality:
Compute a lower and upper bound on the full problem, with all scenarios, objective function by taking the average of v^N_N and $\hat{v}^N_{N'}$, respectively, overall replications

$$v^N_N = \frac{1}{M} \sum_{m=1}^{M} v^m_N$$
$$\hat{v}^N_{N'} = \frac{1}{M} \sum_{m=1}^{M} \hat{v}^m_{N'}$$

Compute (Approximate) optimality index
$$AOI = \frac{\hat{v}^N_{N'}}{v^N_N}$$

Stopping Rule:
If $AOI \leq \text{threshold}$, BREAK;
A Smarter Monte Carlo Optimization Recipe

for each candidate sample size $N \in \{1, 5, \ldots\}$ do
 for $m=1:M$ do
 Step 1. Generate a sample of size N
 - for each patient p, generate N scenarios of no-show probability, duration, and punctuality
 Step 2. Solve Sample Average Problem (OSCSP(N)) with the generated sample in step 1
 Let v^m_N be the corresponding optimal objective value
 Step 3. Evaluation of the true objective function using Monte Carlo simulation
 3.1 Generate a another N scenarios of P patients, solve OSCSP(N), and obtain an optimal schedule (x^m, t^m)
 3.2 Generate $N' >> N$ scenarios of P patients
 3.2 Estimate $\hat{v}^m_{N'}$, the true value of the objective function $(\hat{v}^m_{N'})$ using the schedule (x^m, t^m)
 end
end

OSCSP(N) Solution Quality:

$\text{AOI} = \frac{\hat{v}_{N'} - v_N}{v_N} \leq \text{threshold}$, BREAK;
A Smarter Monte Carlo Optimization Recipe

for each candidate sample size \(N \in \{1, 5, \ldots\} \) do

for \(m=1:M \) do

Step 1. Generate a sample of size \(N \)

- for each patient \(p \), generate \(N \) scenarios of no-show probability, duration, and punctuality

Step 2. Solve Sample Average Problem (OSCSP(N)) with the generated sample in step 1

Let \(v^m_N \) be the corresponding optimal objective value

Step 3. Evaluation of the true objective function using Monte Carlo simulation

3.1 Generate another \(N \) scenarios of \(P \) patients, solve OSCSP(N), and obtain an optimal schedule \((X^m, t^m)\)

3.2 Generate \(N' \gg N \) scenarios of \(P \) patients

3.2 Estimate \(\hat{v}^m_{N'} \), the true value of the objective function \((\hat{v}^m_{N'})\) using the schedule \((X^m, t^m)\)

end

OSCSP(N) Solution Quality:

Compute a lower and upper bound on the full problem, with all scenarios, objective function by taking the average of \(v^m_N \) and \(\hat{v}^m_{N'} \), respectively, overall replications

\[
\bar{v}_N = \frac{1}{M} \sum_{m=1}^{M} v^m_N \quad \bar{v}_{N'} = \frac{1}{M} \sum_{m=1}^{M} \hat{v}^m_{N'}
\]

end
A Smarter Monte Carlo Optimization Recipe

for each candidate sample size $N \in \{1, 5, \ldots\}$ do

for $m=1:M$ do

Step 1. Generate a sample of size N
- for each patient p, generate N scenarios of no-show probability, duration, and punctuality

Step 2. Solve Sample Average Problem (OSCSP(N)) with the generated sample in step 1
Let v^m_N be the corresponding optimal objective value

Step 3. Evaluation of the true objective function using Monte Carlo simulation
3.1 Generate another N scenarios of P patients, solve OSCSP(N), and obtain an optimal schedule (X^m, t^m)
3.2 Generate $N' >> N$ scenarios of P patients
3.2 Estimate $\hat{v}^m_{N'}$, the true value of the objective function ($\hat{v}^m_{N'}$) using the schedule (X^m, t^m)

end

OSCSP(N) Solution Quality:
Compute a lower and upper bound on the full problem, with all scenarios, objective function by taking the average of v^m_N and $\hat{v}^m_{N'}$, respectively, overall replications

$$v_N = \frac{1}{M} \sum_{m=1}^{M} v^m_N \quad \quad \quad \quad \quad \hat{v}_{N'} = \frac{1}{M} \sum_{m=1}^{M} \hat{v}^m_{N'}$$

Compute (Approximate) optimality index
$$AOI = \frac{\hat{v}_{N'} - v_N}{\hat{v}_{N'}}$$

end
Solution Approach: Monte Carlo Optimization

A Smarter Monte Carlo Optimization Recipe

for each candidate sample size \(N \in \{1, 5, \ldots\} \) do
 for \(m=1:M \) do
 Step 1. Generate a sample of size \(N \)
 - for each patient \(p \), generate \(N \) scenarios of no-show probability, duration, and punctuality
 Step 2. Solve Sample Average Problem (OSCSP(N)) with the generated sample in step 1
 Let \(v^m_N \) be the corresponding optimal objective value
 Step 3. Evaluation of the true objective function using Monte Carlo simulation
 3.1 Generate another \(N \) scenarios of \(P \) patients, solve OSCSP(N), and obtain an optimal schedule \((X^m, t^m)\)
 3.2 Generate \(N' \gg N \) scenarios of \(P \) patients
 3.2 Estimate \(\hat{v}^m_{N'} \), the true value of the objective function \((\hat{v}^m_{N'})\) using the schedule \((X^m, t^m)\)
 end

OSCSP(N) Solution Quality:
Compute a lower and upper bound on the full problem, with all scenarios, objective function by taking the average of \(v^m_N \) and \(\hat{v}^m_{N'} \), respectively, overall replications

\[
\overline{v}_N = \frac{1}{M} \sum_{m=1}^{M} v^m_N \quad \overline{v}_{N'} = \frac{1}{M} \sum_{m=1}^{M} \hat{v}^m_{N'}
\]

Compute (Approximate) optimality index

\[
AOI = \frac{\overline{v}_{N'} - \overline{v}_N}{\overline{v}_N}
\]

Stopping Rule: \(N \) is large enough to obtain a high quality schedule

\(If \ AOI \leq \ threshold, \ BREAK; \)
Presentation Overview

1. Introduction and Motivation
2. The Offline Stochastic Colonoscopy Scheduling (OSCSP)
3. Solution Approach: Monte Carlo Optimization
4. Numerical Example
5. Conclusion and Future Directions
Table 1: Characteristics of tested instance

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Patients ((P))</td>
<td>P Patients; (easy-short, complex-long)=((#E, #C))</td>
</tr>
<tr>
<td>Clinic working hours ((0 - L))</td>
<td>0-expected duration for ((#E, #C))</td>
</tr>
</tbody>
</table>
Tested Instance

Table 1: Characteristics of tested instance

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Patients ((P))</td>
<td>(P) Patients; ((\text{easy-short}, \text{complex-long})=(#E, #C))</td>
</tr>
<tr>
<td>Clinic working hours ((0 - L))</td>
<td>0-expected duration for ((#E, #C))</td>
</tr>
<tr>
<td>Type-duration probability ((\alpha))</td>
<td>(\alpha = 0.75)</td>
</tr>
<tr>
<td>Duration models parameters</td>
<td>short(\sim</td>
</tr>
<tr>
<td></td>
<td>long(\sim</td>
</tr>
<tr>
<td>Patient unpunctuality ((u))</td>
<td>late on-average i.e., (u \sim N(0, 20^2))</td>
</tr>
<tr>
<td>No-show rate ((r))</td>
<td>18% (Berg et al.)</td>
</tr>
<tr>
<td>No-show probability ((\eta))</td>
<td>Uniform(0,1)</td>
</tr>
</tbody>
</table>
Before all else, we need a set of scenarios (a sample)

- Let us try the Monte Carlo Optimization recipe
Before all else, we need a set of scenarios (a sample)

★ Let us try the Monte Carlo Optimization recipe

Hypotheses

1. $M = 30$ replications are enough to remove the effect of the large variance between the expected performance of the sample based schedules
Before all else, we need a set of scenarios (a sample)

Let us try the Monte Carlo Optimization recipe

Hypotheses

1. \(M = 30 \) replications are enough to remove the effect of the large variance between the expected performance of the sample based schedules

2. \(N \in \mathcal{N} := \{1, 5, 10, 30, 40, 50, 100, 300, 500, 1000\} \) is large enough for solving the problem with 95\% approximation accuracy (\(AOI = 0.05 \))
Numerical Example

Sample Size: \((4:4)\), 0\% no-show rate, punctual

\[f_{\text{short}} = |N(30, 6.67^2)| \]
\[f_{\text{long}} = |N(75, 10^2)| \]
Sample Size: \((4:4)\), 0% no-show rate, punctual

\[f_{\text{short}} = |N(30, 6.67^2)| \]
\[f_{\text{long}} = |N(75, 10^2)| \]

Figure 1: Convergence behavior of OSCSP mean approximated performance \((\bar{v}_N, \text{blue})\) and mean estimated performance \((\bar{v}_{N'}, \text{red})\) under duration uncertainty.
Sample Size: (4:4), 0% no-show rate, punctual

So, 500 scenarios?

\[
f_{\text{short}} = |N(30, 6.67^2)| \\
f_{\text{long}} = |N(75, 10^2)|
\]

Figure 1: Convergence behavior of OSCSP mean approximated performance (\(\overline{v}_N\), blue) and mean estimated performance (\(\overline{v}_N'\), red) under duration uncertainty.
Sample Size: (4:4), 0% no-show rate, punctual

- So, 500 scenarios?
 - Expected Performance of the “true” optimal schedule to the problem with all scenarios:

\[f_{\text{short}} = |N(30, 6.67^2)| \]
\[f_{\text{long}} = |N(75, 10^2)| \]

Figure 1: Convergence behavior of OSCSP mean approximated performance (\(\overline{v}_N\), blue) and mean estimated performance (\(\overline{v}_{N'}\), red) under duration uncertainty
Sample Size: \((4:4)\), 0\% no-show rate, punctual

- So, 500 scenarios?
 - Expected Performance of the “true” optimal schedule to the problem with all scenarios:
 - Lower bound\(=194 \pm 0.7\) Upper Bound\(=202 \pm 0.20\)

\[
\begin{align*}
 f_{\text{short}} &= |N(30, 6.67^2)| \\
 f_{\text{long}} &= |N(75, 10^2)|
\end{align*}
\]

Figure 1: Convergence behavior of OSCSP mean approximated performance \((\bar{v}_N, \text{blue})\) and mean estimated performance \((\bar{v}_{N'}, \text{red})\) under duration uncertainty
Sample Size: (4:4), 0% no-show rate, punctual

- So, 500 scenarios?
 - Expected Performance of the “true” optimal schedule to the problem with all scenarios:
 - Lower bound = 194 ± 0.7, Upper Bound = 202 ± 0.20

\[f^{\text{short}} = |N(30, 6.67^2)| \]
\[f^{\text{long}} = |N(75, 10^2)| \]

Figure 1: Convergence behavior of OSCSP mean approximated performance \((\bar{v}_N, \text{blue}) \) and mean estimated performance \((\bar{v}_{N'}, \text{red}) \) under duration uncertainty
Numerical Example

Sample Size: (4:4), 0% no-show rate, punctual

- So, 500 scenarios?
 - Expected Performance of the “true” optimal schedule to the problem with all scenarios:
 - Lower bound = 194 ± 0.7
 - Upper Bound = 202 ± 0.20
 - Tight Confidence Intervals, i.e., small variances M=30 replicates ✓

\[f_{\text{short}} = |N(30, 6.67^2)| \]
\[f_{\text{long}} = |N(75, 10^2)| \]

Figure 1: Convergence behavior of OSCSP mean approximated performance \((\bar{v}_N, \text{blue})\) and mean estimated performance \((\bar{v}_N', \text{red})\) under duration uncertainty.
Sample Size: (4:4), 0% no-show rate, punctual

So, 500 scenarios?

- Expected Performance of the “true” optimal schedule to the problem with all scenarios:
 - Lower bound = 194 ± 0.7
 - Upper Bound = 202 ± 0.20
 - Tight Confidence Intervals, i.e., small variances M=30 replicates ✓
 - Approximate Optimality Index: 0.02 ✓

\[f_{\text{short}} = |N(30, 6.67^2)| \]
\[f_{\text{long}} = |N(75, 10^2)| \]

Figure 1: Convergence behavior of OSCSP mean approximated performance (\(\overline{u}_N\), blue) and mean estimated performance (\(\overline{u}_{N'}\), red) under duration uncertainty
Sample Size: (4:4), 0% no-show rate, punctual

So, 500 scenarios?

Expected Performance of the “true” optimal schedule to the problem with all scenarios:
- Lower bound = 194 ± 0.7
- Upper Bound = 202 ± 0.20
- Tight Confidence Intervals, i.e., small variances M=30 replicates ✓
- Approximate Optimality Index: 0.02 ✓

A sample of $N = 500$ scenarios is large enough to approximate the optimal schedule

\[
\begin{align*}
 f_{\text{short}} &= |N(30, 6.67^2)| \\
 f_{\text{long}} &= |N(75, 10^2)|
\end{align*}
\]

Figure 1: Convergence behavior of OSCSP mean approximated performance (\bar{v}_N, blue) and mean estimated performance ($\bar{v}_{N'}$, red) under duration uncertainty.
Sample Size: (4:4), 18% no-show rate, 20 min late

$$f_{\text{short}} = |N(30, 6.67^2)|$$
$$f_{\text{long}} = |N(75, 10^2)|$$
Numerical Example

Sample Size: (4:4), 18% no-show rate, 20 min late

\[f_{\text{short}} = |N(30, 6.67^2)| \]
\[f_{\text{long}} = |N(75, 10^2)| \]

Figure 2: Convergence behavior of OSCSP mean approximated performance (\bar{v}_N, blue) and mean estimated performance ($\bar{v}_{N'}$, red) under duration, no-show and arrival uncertainties.
Sample Size: (4:4), 18% no-show rate, 20 min late

- A sample of $N = 500$ scenarios is large enough to approximate the optimal schedule

$$f_{\text{short}} = |N(30, 6.67^2)|$$
$$f_{\text{long}} = |N(75, 10^2)|$$

Figure 2: Convergence behavior of OSCSP mean approximated performance (\bar{v}_N, blue) and mean estimated performance ($\bar{v}_{N'}$, red) under duration, no-show and arrival uncertainties
So, we’ve got a representative sample for the observed uncertainty what to do next?
Provider Time versus Patient Time

Expected idle & over \[500\] + (1 - \[\lambda\]) \cdot \text{Expected total waiting} \[500\]

Gives clinic managers several schedules from which they may select based on their goals.
Provider Time versus Patient Time

\[
\min \lambda \cdot \text{Expected}_{500}[\text{Idle & Over}] + (1 - \lambda) \cdot \text{Expected}_{500}[\text{Total Waiting}]
\]
Provider Time versus Patient Time

\[
\min \lambda \cdot \text{Expected}_{500}\text{[Idle \& Over]} + (1 - \lambda) \cdot \text{Expected}_{500}\text{[Total Waiting]}
\]

★ Gives clinic managers several schedules from which they may select based on their goals.
Numerical Example

Provider Time versus Patient Time

\[
\text{min } \lambda \cdot \text{Expected}_{500}[\text{Idle & Over}] + (1 - \lambda) \cdot \text{Expected}_{500}[\text{Total Waiting}]
\]

★ Gives clinic managers several schedules from which they may select based on their goals

Figure 3: Expected performance of Pareto optimal schedules as function of the trade-off level \(\lambda \).
Scheduling Policies for Different Case Mix

One Type: Appointments Lengths

- "Dome-Shape"

Balanced Mix: (e.g., 4E:4C)

Sequence: "Alternating Bucket" of Easy → Complex

Appointments Lengths: "Bucket-based-Dome"

Unbalanced Mix (e.g., 6E:2C)

Sequence: "Alternating Bucket" of Easy → Complex

Appointments Lengths: "Bucket-based-Dome"

\(^3\text{a.k.a Time allowance between two consecutive patients}\)
One Type: Appointments Lengths3 \sim "Dome-Shape"

3 Time allowance between two consecutive appointments
Scheduling Policies for Different Case Mix

- **One Type:** Appointments Lengths\(^3\) \sim \text{"Dome-Shape"}

- **Balanced Mix:** (e.g., 4E:4C)

\(^3\text{a.k.a Time allowance between two consecutive patients}\)
Scheduling Policies for Different Case Mix

- **One Type:** Appointments Lengths\(^3\) ~ “Dome-Shape”
- **Balanced Mix:** (e.g., 4E:4C)

![Graph showing optimal interval length vs appointment interval]

Shehadeh, K., Cohn, A. University of Michigan 26/33
Scheduling Policies for Different Case Mix

- **One Type:** Appointments Lengths3 \(\sim\) “Dome-Shape"

- **Balanced Mix:** (e.g., 4E:4C)
 - **Sequence:** “Alternating Bucket” of Easy \rightarrow Complex
 - **Appointments Lengths:** “Bucket-based-Dome”

\(^3\text{a.k.a Time allowance between two consecutive patients}\)
Scheduling Policies for Different Case Mix

- **One Type:** Appointments Lengths\(^3\) \~ \text{"Dome-Shape"}

- **Balanced Mix:** (e.g., 4E:4C)
 - **Sequence:** \text{"Alternating Bucket"} of \textit{Easy} \rightarrow \textit{Complex}
 - **Appointments Lengths:** \text{"Bucket-based-Dome"}

- **Unbalanced Mix** (e.g., 6E:2C)
 - **Sequence:** \text{"Alternating Bucket"} of \textit{Easy} \rightarrow \textit{Complex}
 - **Appointments Lengths:** \text{"Bucket-based-Dome"}

\(^3\text{a.k.a Time allowance between two consecutive patients}\)
Scheduling Policies for Different Case Mix

Natural Question: how to leverage small schedules properties in solving the more challenging versions of the problem?
Natural Question: how to leverage small schedules properties in solving the more challenging versions of the problem?
Natural Question: how to leverage small schedules properties in solving the more challenging versions of the problem?

<table>
<thead>
<tr>
<th>Patient Mix</th>
<th>Easy</th>
<th>Easy</th>
<th>Complex</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 2 Easy: ≥ 1 Complex</td>
<td>1 2 3</td>
<td>… … … … … … … … P-1</td>
<td>P</td>
</tr>
</tbody>
</table>

Appointment slot
Scheduling Policies for Different Case Mix

Natural Question: how to leverage small schedules properties in solving the more challenging versions of the problem?

<table>
<thead>
<tr>
<th>Patient Mix</th>
<th>Intractable 10 assignment and 10 appointment times decisions problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>5Easy: 5Complex</td>
<td>1 2 3 9 10</td>
</tr>
</tbody>
</table>

Appointment slot
Natural Question: how to leverage small schedules properties in solving the more challenging versions of the problem?

Patient Mix

<table>
<thead>
<tr>
<th>Easy</th>
<th>Easier to solve problem~10 minutes</th>
<th>Easy</th>
<th>Complex</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>9</td>
</tr>
</tbody>
</table>

Appointment slot

Paired t-test

$f(S^{\text{Fixed}}) - f(S^{0\text{pt}}) \in [-0.75 \pm 1.87]$, i.e., No “statistically” significant differences
So, Worth the Computational Efforts?
So, Worth the Computational Efforts?

4Easy:4Complex
18\% noShow
±20min
So, Worth the Computational Efforts?

4Easy:4Complex
18\% noShow
\pm 20\text{min}
1,000\text{Days}
Numerical Example

So, Worth the Computational Efforts?

Figure 4: Expected performance from 1,000 simulation runs of OSCSP schedule and some traditional scheduling rules. The case of 18% no-show rate and 20 min early/late.
Numerical Example

So, Worth the Computational Efforts?

Figure 4: Expected performance from 1,000 simulation runs of OSCSP schedule and some traditional scheduling rules. The case of 18% no-show rate and 20 min early/late.
So, Worth the Computational Efforts?

Figure 4: Expected performance from 1,000 simulation runs of OSCSP schedule and some traditional scheduling rules. The case of 18% no-show rate and 20 min early/late.
1 Introduction and Motivation

2 The Offline Stochastic Colonoscopy Scheduling (OSCSP)

3 Solution Approach: Monte Carlo Optimization

4 Numerical Example

5 Conclusion and Future Directions
Conclusion

- Colonoscopy scheduling have unique characteristics that are different in nature and potentially different from other OPC.

- Better scheduling policies can be developed by approximating the uncertainty within these characteristics.

- Properties of the “approximated” schedules can be exploited in designing a fast and easy to use schedule optimization tool.
Acknowledgment

- My Star Professor Amy Cohn
- The Center for Healthcare Engineering and Patient Safety
- The Seth Bonder Foundation
- The IOE Family at the University of Michigan
"No one can whistle a symphony. It takes a whole orchestra to play it"
Q&A

THE QUESTION MARK

IS IT ALWAYS SO UNCERTAIN?
I'M SO GLAD YOU ASKED.

Karmel Shehadeh
Ksheha@umich.edu

Professor Amy Cohn
amycohn@umich.edu