Scheduling Colonoscopy Patients in an Outpatient Endoscopy Clinic

Karmel Shehadeh¹, Amy Cohn PhD¹, Sameer Saini², Jacob Kurlander²
University of Michigan¹, University of Michigan Health System ²

Background

- Colorectal Cancer (CRC) - Second leading cause of cancer related deaths in the U.S
- Colonoscopy - CRC screening test - Spot existing cancers, so treatment can be started, and prevent future cancers, through the detection and removal of polyps

Colonoscopy Appointment problem (CAP)

- A unique bimodal duration structure with high unpredictability

<table>
<thead>
<tr>
<th>Duration</th>
<th>Prep Quality</th>
<th>Health Conditions</th>
<th>No. of Polyps</th>
<th>Type of Sedation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short</td>
<td>Adequate</td>
<td>Good</td>
<td>Low</td>
<td>Conscious</td>
</tr>
<tr>
<td>Long</td>
<td>Poor</td>
<td>Poor</td>
<td>High</td>
<td>Anesthesia</td>
</tr>
</tbody>
</table>

- Risk of CRC and patient outcomes
- Patient absenteeism, unpunctuality and cancellations
- Multiple and conflicting criteria that affect the quality of the schedule
 - Patient access to screening and preferences
 - Patients Delays on the day of the procedure
 - Provider preferences, overtime and idling

Problem Statement

Objective

Optimal patients order and appointment times that minimizes total expected waiting, idling and overtime

First stage decisions (generate a schedule)

- Patient order
- Appointment times

Second stage decisions (actual schedule)

- Arrival time and actual start time
- Waiting, idling and overtime (metrics)

Framework

- Simulation and mathematical programming techniques to analyze and improve the scheduling of colonoscopy patients
- Within a Monte Carlo optimization framework, we approximated the duration structure based on the likelihood of the duration type
- Properties of the optimal schedule under different scenarios with respect to a weighted combination of the performance metrics

Scheduling Model

Monte Carlo Optimization

- How the performance of optimal schedule changes as a function of variation in the prep?
- How the performance of optimal schedule changes as a function of absenteeism?
- How the performance of optimal schedule changes as a function of arrival uncertainty?

Results

- Figure 2: Effect of duration uncertainty on schedule performance
- Figure 3: Effect of arrivals uncertainty on schedule performance
- Figure 4: Changes in schedule performance for one classes of no-show (blue) as the rate changes from 0 to 0.35 and for two patient classes (red) where the rate is 0.18 for one class and ranges from 0 to 0.35 for the other class

Future Directions

- Continue observation at the University of Michigan Medical Procedure Unit
- Models for patients outcomes and preferences to include them in the scheduling decisions
- Statistical models for the unique colonoscopy duration, absenteeism and arrival distributions and include them in the scheduling decision.
- Design practical scheduling template and use simulation and UMHS-MPU historical data to validate it and identify areas for improvement

Acknowledgements

- The Seth Bonder Foundation
- Summer Undergraduate Research in Engineering-SURE (for UM undergraduate students)
- We also express our gratitude all Center for Healthcare Engineering and Patient Safety (CHEPS) students who have contributed to this project