

Considering No-shows And Procedure Time Variability When Scheduling Endoscopy Patients

Karmel Shehadeh Jacob Kurlander, MD

Amy Cohn, PhD Sameer Saini, MD

> INFORMS, Nashville November 14, 2016

Team Recognition

- Systems Concepts for the Optimization and Personalization of Endoscopy Scheduling (SCOPES) team
 - Amy Cohn, Dr. Kurlander and Dr. Saini
 - All CHEPS students who have contributed to SCOPES

Presentation Outline

MICHIGAN ENGINEERING UNIVERSITY OF MICHIGAN

- Background
- Schedule quality analysis
- Key messages
- Future directions

Presentation Outline

Background

- Schedule quality analysis
- Key messages
- Future directions

Endoscopy Unit

- Outpatient Procedure Center (OPC)
- Conducting screening and surveillance procedures for diseases affecting the digestive system
 - abdominal pain, colitis, constipation, etc.
- Encountering exponentially increasing demand in a resource-constrained setting
 - -7.25 million procedures in 2010¹

[1. Peery, Anne F., et al, 2012]

Colonoscopy Procedure

- MICHIGAN ENGINEERING UNIVERSITY OF MICHIGAN
- Screening test for Colorectal Cancer (CRC)
 - $-\ 2^{nd}$ leading cause of cancer-related death in the US^2
- Enables a gastroenterologist to evaluate the inside of the large intestine (rectum and colon)
 - Identify existing cancer, prompting treatment
 - Prevent future cancer (*polyps*)

6

Colonoscopy Scheduling

- Many challenges in OPC scheduling
- Scheduling colonoscopy yields an added challenge due to the bimodal duration structure

Duration	Prep Quality	Health Conditions	No. of Polyps
Short (30 min)	Adequate	Good	Low
Long (90 min)	Poor	Poor	High

* Note: also for some cases procedure is not performed

Importance?

- Better Schedule
 - Less provider fatigue
 - More efficient performance
- Less Waiting
 - Better experience
 - Fewer cancelation
- Better Outcome!

Presentation Outline

Background

• Schedule quality analysis

- Key messages
- Future directions

Monte Carlo Simulation (MCS)

- Identify scheduling policies while
 - I. Considering the unique and bimodal duration structure

Duration	Prep Quality	Health Conditions	No. of Polyps
Short (30 min)	Adequate	Good	Low
Long (90 min)	Poor	Poor	High

 \gg Patient i has probability of p_i being a 30 min and $1-p_i$ of being 90 min procedure

Monte Carlo Simulation (MCS)

- Identify scheduling policies while
 - I. Considering the unique and bimodal duration structure
 - 2. Considering no-shows and the effect of delays
- Evaluate each policy's performance under potentially conflicting metrics
 - Overtime, idle time, waiting time, no. of cancelled procedures

MCS: Tested Policies

Duration Policies

- Fixed
 - Every patient gets 60 minutes
- Predicted duration (PD)
 - $P(90 \min) = p_i$
 - $P(30 \text{ min}) = 1 p_i$
- Expected duration (ED)
 - Weighted average

Order Policies

- Random
 - Any order
- Shortest colonoscopy first
 - All 30 min procedures first
- Longest colonoscopy first
 - All 90 min procedures first

MCS: Pseudo Code

Input : Set of polices			
Output: Performance metrics			
1 for each policy do			
2 for d=1:days do			
3	Assign patient a procedure duration type		
4	Policy dictates order and duration		
5	Process the patients throughout the day (actual schedule)		
6	Calculate the metrics for the day		
7	7 end		
8	8 Calculate the average of metrics over all simulation days for this policy		
9 end			
10 return Averages of metrics values over all days for each policy			
11 C	11 Compare across policies		
1			

Figure 1: Monte Carlo simulation logic

MCS: Characteristics

- Single provider
- Provider and room are immediately available
- 18%¹ no-shows rate
- N procedures

Number of long procedures: N^{l}

≻P(90 min) = *p*

Cannot wait more than 60 minutes with high probability

Number of short procedures: $N - N^{l}$

≻P(30 min) = *p*

Cannot wait more than 60 minutes with low probability

N^I=0.2N, p=0.75, Waiting Time

Figure 1: Average waiting time (patient/day)

N^I=0.2N, p=0.75, No. of Cancelled procedures

Figure 2: Average number of cancelled procedures (day)

N^I=0.2N, p=0.75, Overtime

Figure 3: Average overtime (day)

N^I=0.2N, p=0.75, Idle Time

Figure 4: Average total idle time (day)

Higher no-shows rate?

N¹=0.2N, p=0.75, rate=18%

Figure 1: Average waiting time (patient/day)

N¹=0.2N, p=0.75, rate=35%

Figure 5: Average waiting time (patient/day)

* same performance, lower values

Higher no-shows rate?

N¹=0.2N, p=0.75, rate=18%

Figure 4: Average total idle time (day)

N^I=0.2N, p=0.75, rate=35%

Figure 6: Average total idle time (day)

* higher values, more variability

Lower *p*?

N^I=0.2N, p=0.75

N^I=0.2N, p=0.25

Figure 1: Average waiting time (patient/day)

Figure 7: Average waiting time (patient/day)

*performance change, more variability

Different population?

N^I=0.2N, *p*=0.75

Figure 1: Average waiting time (patient/day)

N^I=0.8N, *p*=0.75

Figure 8: Average waiting time (patient/day)

*performance change

Outline

- Background
- Schedule quality analysis
- Key messages
- Future directions

MCS key messages

- Colonoscopy characteristics determine schedule quality
- Unique, different in nature and potentially different from other OPC
- Policy performance depends on the considered characteristic(s)

Outline

- Background
- Schedule quality analysis
- Key Messages
- Future Directions

Future directions

- Continue evaluating different scheduling policies considering ALL of the special characteristics of colonoscopy procedure
- Monte Carlo simulation
- Sampling techniques to approximate uncertainty
- Stochastic optimization for better insights

Support acknowledgement

- Center for Healthcare Engineering and Patient Safety
- The Seth Bonder Foundation
- Summer Undergraduate Research in Engineering–SURE (for UM undergraduate students)
- We also express our gratitude to Dr. Jacob Kurlander, Dr. Sameer Saini and all CHEPS students who have contributed to this project

RESPECT PUNCTUATION

Karmel S. Shehadeh Ksheha@umich.edu Amy Cohn amycohn@umich.edu

References

- 1. Peery, Anne F., et al. "Burden of gastrointestinal disease in the United States: 2012 update." Gastroenterology 143.5 (2012): 1179-1187.
- 2. American Cancer Society. "Key Statistics for Colorectal Cancer." (2015). Accessed November 06, 2016. http://www.cancer.org/cancer/colonandrectumcancer/detailedguide/colorectal-cancer-key-statistics.
- 3. Berg, Bjorn P., et al. "Optimal booking and scheduling in outpatient procedure centers." Computers & Operations Research 50 (2014): 24-37.
- 4. Schonberg, Mara A., et al. "Colon cancer screening in US adults aged 65 and older according to life expectancy and age." *Journal of the American Geriatrics Society* 63.4 (2015): 750-756.
- 5. Gupta, Diwakar, and Brian Denton. "Appointment scheduling in health care: Challenges and opportunities." IIE transactions 40.9 (2008): 800-819.

N^I=0.8N, *p=0.75*, No. of Cancelled procedures

