Simulation of patient scheduling for colonoscopy

Karmel Shehadeh1,2, Jacob Kurlander3, Sameer Saini4, Amy Cohn1,2, Luis Garcia-Guzman1,2, Henry Ballout1,2, Jackson Bennett1, Ajaay Chandrasekaran1, Abhilash Rao1,3, Meng Sang1,2, Pranjal Singh1,2, William Yang1,2, Bill Zhang1
1Department of Industrial and Operations Engineering, University of Michigan, 2Center for Healthcare Engineering and Patient Safety, 3University of Michigan Medical School, 4University of Michigan Health System

Problem Statement

Background
- Colorectal cancer (CRC) is the second leading cause of cancer-related deaths in the U.S.
- Colonoscopy can both identify existing cancers, so treatment can be started, and prevent future cancers, through the detection and removal of polyps.
- Largely due to the pre-procedure bowel prep, there can be significant variability in procedure time.
- This negatively impacts providers and capacity utilization. More importantly, long delays for patients can have negative health effects.

Patient Flow Overview

![Patient Flow Diagram](image)

Figure 1: Typical flow of a single patient on the day of colonoscopy and major sources of variability highlighted

Objectives
- Develop a simulation-based framework for evaluating patient schedules under multiple criteria
- Analyze and compare several heuristic scheduling and sequencing rules

Methods
- Monte Carlo simulation to evaluate 8 different scheduling heuristics.
- Evaluated results under 4 (potentially conflicting) metrics:
 1. Overtime.
 2. Idle time.
 3. Waiting time.
 4. Patient total time in the unit.

Table 1: Tested Heuristics

<table>
<thead>
<tr>
<th>Heuristics</th>
<th>Ordering method</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPF:</td>
<td>Schedule procedures in ascending order of duration mean.</td>
</tr>
<tr>
<td>LPF:</td>
<td>Schedule procedures in descending order of duration mean.</td>
</tr>
<tr>
<td>SVF:</td>
<td>Schedule procedures in ascending order of duration variance.</td>
</tr>
<tr>
<td>LVF:</td>
<td>Schedule procedures in descending order of duration variance.</td>
</tr>
<tr>
<td>INP:</td>
<td>Schedule procedures in an ascending order of probability of no-show.</td>
</tr>
<tr>
<td>DNP:</td>
<td>Schedule procedures in an descending order of probability of no-show.</td>
</tr>
<tr>
<td>INPV:</td>
<td>Schedule procedures in an ascending order of probability of no-show x duration variance.</td>
</tr>
<tr>
<td>DNPV:</td>
<td>Schedule procedures in an ascending order of probability of no-show x duration variance.</td>
</tr>
</tbody>
</table>

Basic Flow Logic

Problem Statement

Objectives

- Develop a simulation-based framework for evaluating patient schedules under multiple criteria
- Analyze and compare several heuristic scheduling and sequencing rules

Methods

- Monte Carlo simulation to evaluate 8 different scheduling heuristics.
- Evaluated results under 4 (potentially conflicting) metrics:
 1. Overtime.
 2. Idle time.
 3. Waiting time.
 4. Patient total time in the unit.

Table 1: Tested Heuristics

<table>
<thead>
<tr>
<th>Heuristics</th>
<th>Ordering method</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPF:</td>
<td>Schedule procedures in ascending order of duration mean.</td>
</tr>
<tr>
<td>LPF:</td>
<td>Schedule procedures in descending order of duration mean.</td>
</tr>
<tr>
<td>SVF:</td>
<td>Schedule procedures in ascending order of duration variance.</td>
</tr>
<tr>
<td>LVF:</td>
<td>Schedule procedures in descending order of duration variance.</td>
</tr>
<tr>
<td>INP:</td>
<td>Schedule procedures in an ascending order of probability of no-show.</td>
</tr>
<tr>
<td>DNP:</td>
<td>Schedule procedures in an descending order of probability of no-show.</td>
</tr>
<tr>
<td>INPV:</td>
<td>Schedule procedures in an ascending order of probability of no-show x duration variance.</td>
</tr>
<tr>
<td>DNPV:</td>
<td>Schedule procedures in an ascending order of probability of no-show x duration variance.</td>
</tr>
</tbody>
</table>

Preliminary Results

- **Figure 2:** Monte Carlo simulation logic for each heuristic
- **Figure 3:** Average procedure and recovery rooms overtimes per day.
- **Figure 4:** Average idle time per day
- **Figure 5:** Average waiting time for intake and for procedure per day over all patients
- **Figure 6:** Average total time spent in the unit per day over all patients

Acknowledgements

- The Seth Bonder Foundation
- Summer Undergraduate Research in Engineering–SURE (for UM undergraduate students)
- We also express our gratitude to Dr. Jackob Kurlander, Dr. Sameer Saini and all CHEPS students who have contributed to this project

(Session-Name-Abbreviation 000)