Improving Veteran Access to Eye Care Using Facility Location Models

Adam VanDeusen, MPH · Amy Cohn, PhD

University of Michigan
CHEPS

INNOVATING HEALThCARE DELIVERY

FOSTERING LEARNING

BUILDING COMMUNITY

POSITIVE IMPACT THROUGH...

Research
Education
Implementation
Outreach
Dissemination
Veteran Eye Care in Georgia

VA Eye Care
Add Screening Options

VA Eye Care
VA Primary Care
What are we trying to solve?

VA primary care visit + Tech performs eye screening
What kind of problem is this?

• Combinatorial matching problem
 – Deciding locations to offer eye care and how to staff those locations
• Constrained resources
• Multi-criteria decision
 – Consider cost, distance traveled, number of patients seen, etc.
Application

- Low-vision/blindness can have debilitating effects
 - Challenge with low-vision and driving
- Prevalence of diabetes in VA patients (11.4%) higher than general US population (7.2%)
 - Diabetes strongly associated with eye disease and vision impairment
• Why VA research?
 – VA is cost-incentivized to reduce barriers to accessing care
 – Patient utilization of care is relatively consistent

• Why this population?
 – Veterans report greater delays in seeking care than non-veterans
 – Eye care is 3rd most utilized service in VA (after primary care and mental health)
Problem Statement

• Goal: Evaluate **which locations** to offer eye care screenings and **what provider type(s)** to staff each eye care location

• Assumptions:
 – Patients go to “assigned” clinic for eye care screening
 – One-year time frame
 – Patients have homogeneous screening need (one screening every other year)

• Limitations:
 – Considering eye care screening only (follow-up care not included)
 – No consideration for patients’ provider preferences
General modeling approach

Possible eye care locations
• 25 VA locations in Georgia

Decide
• At which locations do we offer eye care?
• What kind(s) of provider(s) should staff each location?

“Assign” patients
• Patients from a given zip code assigned to clinic location(s)

Consider scenarios
• Start from current state
• Start from scratch
Model Overview: Feasibility Constraints

- Patient Capacity

\[\sum_{z \in Z} x_{zc}^t \leq v^t \cdot y_c^t \quad \forall c \in C, \forall t \in T \]

- Demand

\[\sum_{t \in T} \sum_{c \in C} x_{zc}^t \geq n_l \cdot p_z \quad \forall z \in Z \]
\[\sum_{t \in T} \sum_{c \in C} x_{zc}^t \leq n_u \cdot p_z \quad \forall z \in Z \]

- Provider Capacity

\[y_c^t \leq g_c^t \quad \forall t \in T, \forall c \in C \]
\[\sum_{t \in T} y_c^t \leq g_c \quad \forall c \in C \]
Model Overview: Three objective functions

I. Maximize patients assigned

\[
\text{Maximize } \sum_{z \in Z} \sum_{c \in C} \sum_{t \in T} x_{ze}^t
\]

+ constraints: budget, distance

II. Minimize overall costs

\[
\text{Minimize } \left[\sum_{c \in C} \sum_{z \in Z} \sum_{t \in T} (a_c^t \cdot x_{ze}^t + (d_{ze} \cdot x_{ze}^t) \cdot r + f_l^t \cdot y_l^t) \right] + h \cdot \left(\sum_{z \in Z} \left(a_n \cdot p_z - \sum_{t \in T} \sum_{c \in C} x_{ze}^t \right) \right)
\]

+ constraints: patients, distance

III. Minimize furthest distance traveled

+ constraints: budget, patients

\[
\text{Minimize } m
\]
Data Overview

- Patients accessing Georgia VA for (any) care in 2017
 - Approx. 200,000 patients, grouped by zip code
- Clinic locations
 - 25 VA clinics in Georgia
- Driving distance from center of each zip code to each clinic location calculated via Google API
- Budget/costs, provider capacities, and other clinic-specific values obtained from VA
- Model implemented in CPLEX
Results

Model: Maximize Patients Assigned

Constraints:
• Budget: Vary ($20M-$22M)
• Max. Distance Traveled: 150 miles
Results: Maximize Patients Assigned

(max dist: 150 miles)
Model: Minimize cost

Constraints:
- Max. Distance Traveled: Vary (100-200 miles)
- Minimum patients assigned: 5,000
Results: Minimize Cost

(min 5,000 total assigned)
Model: Minimize Maximum Distance Traveled

Constraints:
- Minimum Patients: Vary (10K – 30K patients)
- Budget: $21M
Results: Minimize Maximum Distance Traveled

(budget: $21M)
Conclusions & next steps

• Maximizing number of patients assigned is of most interest to clinical collaborators
• Each objective function inherently considers trade-offs
• Tool can be used by VA when evaluating community care integration
• Next…
 – Incorporate stochasticity
 – Consider implications for follow-up care
 – Generalize beyond Georgia
Acknowledgements

• VA: VISN 7
 – Dr. April Maa
 – Cliff Guyton
• The Seth Bonder Foundation
• Center for Healthcare Engineering and Patient Safety (CHEPS)

• Team members:
 – Jordan Goodman
 – Michelle Chen
 – Matthew Levenson
 – James McAuliffe
 – Muhammed Ugur
 – Dima Chaar
Adam VanDeusen
ajvandeu@umich.edu
@adam_vandeusen

Center for Healthcare Engineering & Patient Safety
cheps-contact@umich.edu
@UofMCHEPS