

LEAN Evaluation of Glaucoma Clinic Workflow

Nish Patel BS¹, Casey Scavone BS¹, John Musser BS¹, Leslie Niziol MS¹, Abhilash Rao MS², Elizabeth Olin MS², Amy Cohn PhD², Shivani Kamat MD¹, Manjool Shah MD¹, Paula Anne Newman-Casey MD, MS¹

¹Department of Ophthalmology & Visual Sciences, University of Michigan Medical School, Ann Arbor, MI ²Department of Industrial and Operations Engineering, University of Michigan School of Engineering, Ann Arbor, MI

Background

- Glaucoma is a leading cause of irreversible blindness, affecting over 70 million people worldwide, with 10% of these people suffering from blindness in both eyes.¹
- The current leading treatment is eye drops that lower the intraocular pressure (IOP), inhibiting the progression of glaucoma.^{2,3}
- Adherence to glaucoma medication regimens is estimated to be as low as 30-80%^{4,5}; this poor adherence has been correlated with more severe vision damage from glaucoma.⁶
- Counseling and educational information tailored to each patient's needs have been the most successful in combating poor adherence. However, these interventions are time-intensive.
- Although providers believe there is not enough time for additional counseling during a clinic visit, many glaucoma patients complain about long clinic wait times.

Objectives and Hypothesis

- We hypothesize that there is considerable time during a glaucoma clinic visit when patients are not engaged in value added activities.
- We aimed to quantify these wait times to identify times that could be used for educational interventions.

Methods

Time Studies

- A purposive sample of new visit (NV) and return visit (RV) patients, across different providers and days of the week, seen at the Kellogg Eye Center glaucoma clinic were included over 4 months.
- Patients were followed through their clinic visit and length of time spent within each component of their visit was recorded using a stopwatch.

Lean⁸ Observations

 Clinic flow (Figure 1) was observed, paying attention to bottlenecks, long wait times, queuing of patients, and miscommunications. Clinic staff and patients were asked for their opinions regarding these issues.

Lean Analysis

- Value-stream mapping⁸ was used to analyze the clinic process and assess for improvement.
- Observations were recorded in an A3 format.9

Figure 1. Clinic visit process

		Wait		Wait		Wait		Wait		Wait	
Process Step	Check-In		Tech Work-Up		Ancillary Testing		Resident / Fellow Exam		Attending Exam		Checkout
Location	Front Desk	Reception	Exam Room	In-Process Waiting Area	Visual Field/ Photo Room	In-Process Waiting Area & Exam Room	Exam Room		Checkout Line	Checkout Desk	

Results

Current A3

<u>I. Background</u>
 Patients are frustrated with how much they have to wait in clinic especially for visits that are perceived to be short: return visits. Approximately 85% of clinic visits in the past year were return visits.

II. Current State

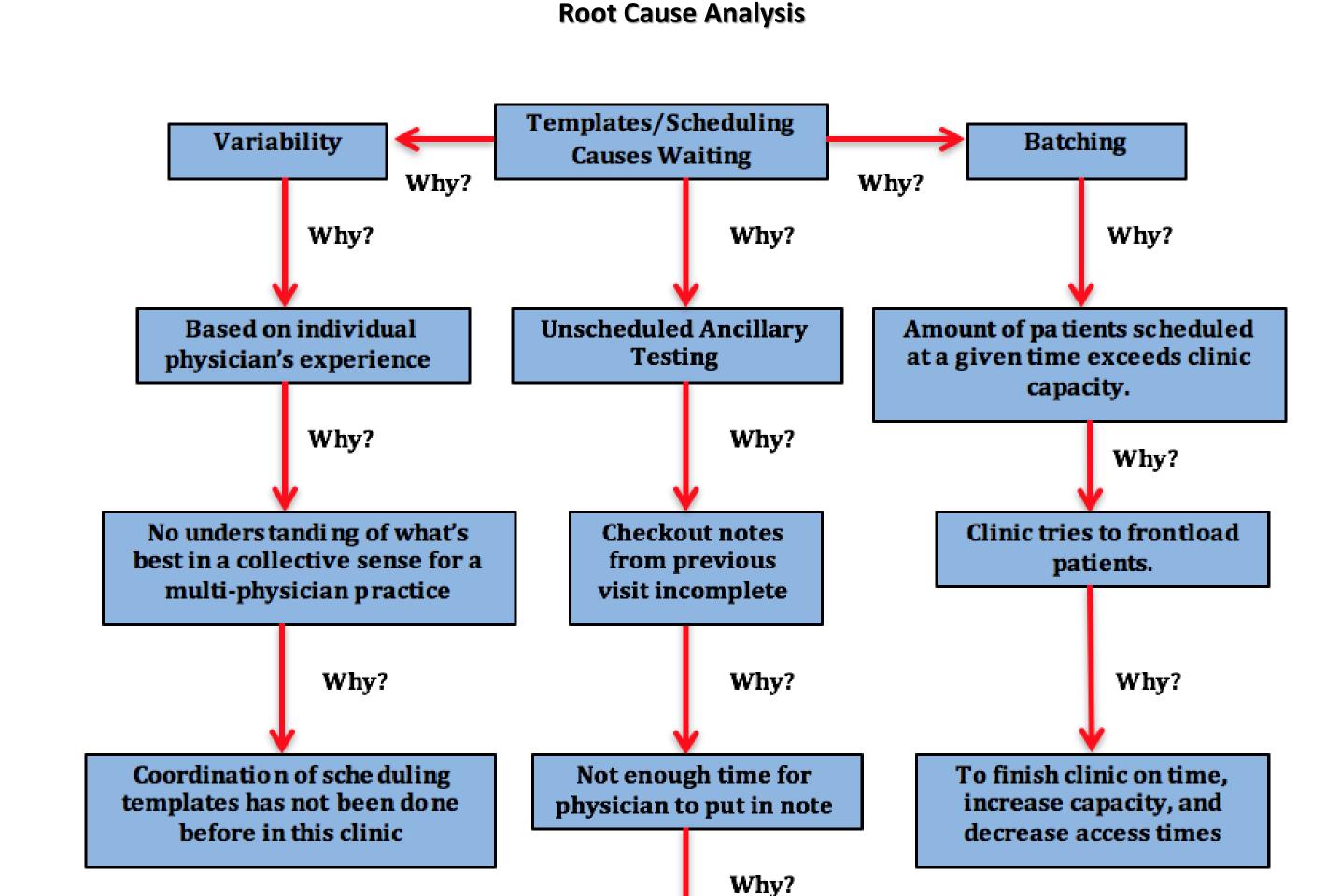
Table 1. Visit times, stratified by new patients and return visit patients

Variable	N	Mean	SD	Min	Max
New Patients					
Total time (min)	29	187.4	44.2	120.0	331.0
Process time (min)	29	126.1	27.7	78.9	173.2
Wait time (min)	29	61.4	31.5	25.5	185.0
Percent Wait time	29	31.9%*	9.4%	13.1%	55.9%
Return Visit Patients					
Total time (min)	47	102.5	45.0	31.5	203.9
Process time (min)	48	49.4	24.8	15.5	131.8
Wait time (min)	48	52.6	31.6	8.9	129.1
Percent Wait time	47	49.4%*	14.7%	20.4%	78.7%

*The percent of wait time to total visit time was significantly larger on average for RV patients (49.4%) compared to NV patients (31.9%), p<0.0001, 2-sample t-test

Table 2. Wait times for each process step for return visit patients

Wait Variables (min)	N	Mean	SD	Min	Max	Median
General reception	48	14.7	9.7	0.2	47.9	11.9
In-process waiting 1	14	12.3	11.3	3.1	43.5	7.4
Photo	9	11.9	12.8	3.5	40.5	4.4
In-process waiting 2	18	12.7	12.1	1.0	47.6	8.9
Resident	35	11.0	9.6	1.0	35.2	7.1
Attending	38	22.1	19.8	2.3	70.1	13.7
Checkout	21	2.0	2.3	0.0	7.7	1.6


Table 3. Frequency of wait time blocks, overall and stratified by new versus return visit patients

Useable Wait Times	Overal	Overall (n=77)		ent (n=29)	Return Patient (n=48)		
	#	%	#	%	#	%	
5+ minutes	77	100.0%	29	100.0%	48	100.0%	
10+ minutes	71	92.2%	29	100.0%	42	87.5%	
15+ minutes	57	74.0%	24	82.8%	33	68.8%	
20+ minutes	42	54.5%	13	44.8%	29	60.4%	
30+ minutes	22	28.6%	5	17.2%	17	35.4%	

III. Goals/Targets

- · Return visit patients spend almost as much time waiting as they do being served.
- Goal: Reduce return visit wait times by 50%.

IV. Analysis

SCHEDULING

TEMPLATES

Why?

Conclusions

- Return visits have a higher percentage of wait time, on average.
- •The root causes identified for wait times through lean evaluation were scheduling issues which lead to patient batching and increased wait times.
- Educational interventions that can be delivered in 10-15 minute blocks may be best integrated into clinic flow.
- Clinic efficiency should be improved to decrease five-minute wait times as they are unlikely to be useful for education.
- Patient and provider movement will be monitored in the future using passive RFID technology¹⁰ to assess process and wait times on a larger scale and to assess the effectiveness of any countermeasures.

References

Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma. *JAMA* 2014; 311(18): 1901-11.

Kass MA, Heuer DK, Higginbotham EJ, et al. The Ocular Hypertension Treatment Study: a randomized trail determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol 2002; 120: 701-713. Discussion 829-30

- Kass MA, Heuer DK, Higginbotham EJ, et al. The Ocular Hypertension Treatment Study: a randomized trail determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol 2002; 120: 701-713. Discussion 829-30.

 Leske MC, Heijl A, Hussein M, et al. Factors for glaucoma progression and the effect of treatment: the early manifest glaucoma trial. Arch Ophthalmol 2003; 121: 48-56.

 Olthoff CM, Schouten JS, van de Borne BW, Webers CA. Noncompliance with ocular hypotensive treatment in patients with glaucoma or ocular hypertension an evidence-based review. Ophthalmology 2005; 112: 953-61.
- Schwartz GF, Quigley HA. Adherence and persistence with glaucoma therapy. Surv Ophthalmol 2008; 53(Suppl 1): S57-68.
 Newman-Casey PA, Weizer J, Heisler, et al. Systematic review of educational interventions to improve glaucoma medication adherence. Semin Ophthalmol. 2013; 28(3): 191-201.
- Newman-Casey PA, Dayno M, Robin AL. Systematic review of educational intervetnions to improve glaucoma medication adherence: an update in 2015. In Press.
 Yusof MM, Khodambashi S, Mokhtar AM. Evaluation of the clinical process in a critical care information system using the Lean method: a case study. BMC Medical Informatics and Decision Making 2012; 12: 150.
 Shook, J. Managing to learn: Using the A3 management process to solve problems, gain agreement, mentor, and lead. Cambridge, MA: Lean Enterprise Institute, Inc. 2008.
- Shook, J. Managing to learn: Using the A3 management process to solve problems, gain agreement, mentor, and lead. Cambridge, MA: Lean E Min D, Yih Y. Fuzzy logic-based approach to detecting a passive RFID tag in an oupatient clinic. J Med Syst 2011; 35: 423-432.

Grant Support

