Improving Surgical Instrument Reprocessing at the University of Michigan Health System

Rama Mwenesi, M.S.E.
Collaborators

Faculty and Staff
Amy Cohn, PhD\(^1,2\)
James P. Bagian, MD, PE\(^1,2\)
Joseph DeRosier, PE, CSPD\(^1,2\)
Shawn Murphy, MSN, RN, CNOR\(^3,4\)
Elvie Casper, RN\(^3\)
Renee Prince, MHA, BSN, RN\(^3\)
Julia Jackson, CST, MEd, FAST\(^4\)

Students
Moses Chan, MSE\(^1,2\)
Amber Smith\(^1,2\)
Nina Scheinberg\(^1\)
Leah Raschid\(^1\)

\(^1\) Center for Healthcare Engineering and Patient Safety, University of Michigan, Ann Arbor
\(^2\) Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor
\(^3\) Department of Surgery, O.R Nursing, University of Michigan Health System
\(^4\) Central Sterile Processing Department, University of Michigan Health System
Outline

• Background
• UMHS Case Study
 – The Problem
 – Our Approach to Finding a Solution
• Methods
 – Literature Review
 – Process Flow Analyses
 – Cleanability Index
 – Instrument Set Reconfiguration
• Conclusions & Next Steps
 – Future Work, Research & Policy
• Questions
Key Terms

Surgical Instrument Reprocessing
Reusable Surgical Instrument Cycle

BACKGROUND
Key Terms & Abbreviations

• Surgical “Case” – Surgery
• O.R. – Operating Rooms
• CSPD – Central Sterile Processing Department (instrument cleaning room)
• Bioburden – “dirt” on instruments from previous use (e.g. blood, bone, tissue)
Background on Instrument Reprocessing

• Efficiencies are a critical challenge for hospitals nationwide

• Involves multiple functions, resources, and stakeholders

• UMHS:
 – 51,583 cases in FY14
 – 65-70 cases/day
 – 4,000 instruments processed/day
• Surgical instrument cycle
 – From Purchase to Use

Instruments Purchased → Catalogued → Stored → Pulled-for-Use → Cleaned, Assembled, Sterilized → Restocked

O.R.

CSPD

“Instrument”

“Instrument Set”
• Instruments are grouped together in predefined *instrument sets*

• Instruments are classified by category

• Each category may have multiple *sub-categories*
UMHS Reprocessing Goal

“To have all items required for the proper care of the patient available at the time of surgery, properly cleaned, sterilized, and in working condition – while ensuring the efficient use of resources.”
Key Issues

• Frequent problems with reprocessing & delivery of instruments
 – Unavailable sets/items
 – Poorly functioning items
 – Insufficiently cleaned items (*containing “bioburden”*)

• Adverse impact on:
 – *Patient safety*
 – Surgical procedure durations
 – Overall surgical outcomes
• Some reasons why these issues exist?
 – O.R. Volume ↑
 • CSPD’s struggle to keep up
 – Room Turnaround Time Pressure ↑
 • O.R. Staff forgo point-of-use cleaning protocols
Our Approach

- **Objective 1**: Understand and improve UH’s reprocessing systems

Purpose
- Grasp and define current state processes

Methods
- Observations, Interviews & Process flow mapping
- Historical Data Analyses
Findings & Contributions

1. Observed variations in Decontam processing times, although UH Policy allocates 15 min of decontam processing time for all sets

2. Identified two major areas of opportunity for further investigation: instrument cleanability and instrument set configurations

3. Recognized that some instruments are more bioburden-prone than others based on design features

4. Concluded that all instruments should not be treated the same way, and more time should be allocated for harder-to-clean items
Objective 2: Develop an “instrument cleanability index”

Purpose

• Create a systematic way of determining
 i. hard-to-clean an instrument is (for example, on a 1-6 scale)
 ii. total distribution in any given set
 iii. operational impacts & tradeoffs

Methods +

• Literature Reviews
 – Content analyses of UMHS, FDA, & Manufacturer reprocessing policy guides
• Focus Group Surveys
 – Using Analytical Hierarchy Process (AHP) to capture the perceived relative ease or difficulty of cleaning from 8 O.R. & 8 CPSD personnel
Findings & Contributions

1. Developed a comprehensive “instrument design features list”

2. Identified low-risk and high-risk instrument categories in UMHS-Neurosurgery (NSA) database and their associated design features

- Surgical bowl: **EASY TO CLEAN**
- Retractor: **HARD TO CLEAN**
Findings & Contributions

1. Developed a comprehensive “instrument design_features list”

2. Identified low- and high-risk instrument categories in UMHS-Neurosurgery (NSA) database and their associated design features

3. Measured staff’s perceived ease and difficulty of cleaning instruments

4. Preliminary analysis showed correlations between staff perceptions and trending bioburden incident data
Objective 3: Develop an instrument-set configuration tool, to decrease number of items sent back for reprocessing

Purpose

• Develop tool to:
 i. Evaluate configuration impacts on the reprocessing outcomes
 ii. Recommend potential optimal set configurations

Methods ++

• Excel-based modeling
Original Instrument Set

Minor Neuro
(120 Instruments)

- easy & hard to clean

Reconfigured into 2 Instrument Sets

Minor Neuro I
(90 easy-to-clean)

Minor Neuro II
(30 hard-to-clean)
Findings & Contributions

1. Developed and beta-tested tool to evaluate set configurations

2. Validated findings of Objective 1 using the tool

“By demonstrating that separating high from low-risk items in a set improves reprocessing outcomes and decreases overall disruption of surgeries”

<table>
<thead>
<tr>
<th>Set Type Name:</th>
<th>Set Type ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuration Summary	Total # Items: 123	Total weight (lbs):
	Total # Item Categories: 20	Average weight per set:
	Total # Sets Configured: 5	Sets > 25 Pounds?:
	Items distributed correctly?: YES	

| Probability Summary | Expected # sets sent back: 4.29855 | Most problematic instrument: |
| | % sets sent back: 86% | % most problematic sent back: |
NEXT STEPS

Future Work
Future Work

- Refine and pilot cleanability index (Objective 2)
- Perform set-reconfiguration pilot with NSA Department
- Publish findings and recommendations
- Contribute to the body of knowledge on:
 - Surgical Instrument Reprocessing
 - Inform purchasing-to-use
 - Patient Safety
Acknowledgements

• Bonder Foundation
• The Doctors Company Foundation
• UM College of Engineering SURE Program
• CHEPS
• UMHS
Questions?

Rama Mwenesi: rmwenesi@umich.edu
Amy Cohn: amycohn@med.umich.edu