Improving Patient Flow in an Outpatient Infusion Center

Jeremy Castaing PhD pre-candidate, Amy Cohn PhD, Brian Denton PhD, Louise Salamin UMHS, Sarah Bach BSE, Christine Gonzalez

Introduction

- Cancer treatment demand exceeds ambulatory infusion capacity
- Improving efficiency of ambulatory infusion can lead to increased capacity and decreased patient wait times
- Goal: Generate appointment schedules that reduce patient waiting times and total length of day of operations
- We are developing a mathematical optimization model and easy-to-implement heuristics to generate infusion patient appointment times which are evaluated through a discrete event simulation model

Methods

- 60+ hours of observations
- 37,000 patient visit records reviewed from 3 electronic health records
- Mapped patient and process flows through the infusion area, oncology clinics, and pharmacy
- Computer simulation allows for evaluation of new appointment schedules without disrupting operations
- Models a simplified version of the UMHS outpatient infusion center
- Features:
  - 12 patients
  - 1 Nurse
  - 1 pharmacy technician
  - 1 pod (3 chairs)
  - Random treatment times
- Inputs:
  - Distributions of treatment, preparation and pharmacy times
  - Appointment schedules (e.g. Baseline, LPT, SPT, Optimization model)
- Output:
  - Expected patient waiting times
  - Expected length of day of operation

General Optimization Model

\[
\min_{\lambda, \nu,\omega,\pi} \left\{ \sum_{p \in P} \sum_{w \in \Omega} \nu_p w_p^\pi + (1 - \lambda) \sum_{w \in \Omega} \pi_w E^\omega \right\}
\]
subject to
\[
\begin{align*}
\sum_{w \in \Omega} \nu_w &= 1 \\
a_p + \nu_p + \nu_p + d^P_f &= 0 \\
a_p + \nu_p + \mu_{1} + \omega_{i} - z_i &= 0 \\
a_p + \nu_p + \mu_{2} - z_2 &= 0 \\
a_p + \nu_p + \mu_{3} - z_3 &= 0 \\
\end{align*}
\]
where:
- \(\nu_p\) = P, \(\nu_w\) = \(\Omega\)
- \(a_p\), \(d^P_f\) \in C
- \(\omega_{i}\) = P
- \(\nu_p\) \in P
- \(\nu_w\) = \(\Omega\)

Decomposition

Algorithm for known sequence

\[
\begin{align*}
\text{Cost decreases during an iteration:} & \quad \delta(A_1) > \delta(A_2) > \delta(A_3) \\
\end{align*}
\]

Cost:

<table>
<thead>
<tr>
<th>Number of scenarios</th>
<th>MIP Solver</th>
<th>Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5 sec</td>
<td>0.2 sec</td>
</tr>
<tr>
<td>20</td>
<td>2 min</td>
<td>0.3 sec</td>
</tr>
<tr>
<td>100</td>
<td>3000 years</td>
<td>0.8 sec</td>
</tr>
<tr>
<td>1000</td>
<td>10^100 years</td>
<td>8.7 sec</td>
</tr>
</tbody>
</table>

Future Research

- The effect of implementing different patient appointment schedules at an infusion center can be approximated by a mathematical optimization model
- Results of computer simulation suggest that scheduling patients with longer infusion times earlier in the day results in reduced patient wait times and total length of day

Results

- Appointment times generated by the decomposition algorithm (with LPT sequence) result in reduced patient wait times and total hours of operation compared to the ones generated by the Baseline schedule, and the LPT and SPT-based heuristics
- Initial results demonstrate a 70% reduction in patient wait times using the appointment schedules generated by the optimization model

Conclusions

- Run the algorithm to solve optimization model on different sequences to find characteristics of good sequences
- Develop a heuristic that can be easily implemented by schedulers
- Enhance simulation model
  - Addition of oncology clinic, increased complexity with additional nurses, chairs and patients

Acknowledgment

Collaborators: Autumn Heiney, Spyros Potiris, Dr. Alon Weizer, Carol McMahon, Corinne Hardecki, Jamie Lindsay and Justin Dicenzo.

This research is generously supported by the Center for Healthcare Engineering and Patient Safety, the Seth Bonder Foundation, the Doctors Company Foundation, the UM College of Engineering SURE Program, the UMHS Comprehensive Cancer Center.