Improving Patient Flow in an Outpatient Cancer Center

Elizabeth Olin1, AJ Chandrasekaran2, Prof. Amy Cohn1, Carolina Typaldos3
1Department of Industrial and Operations Engineering, Ann Arbor, MI.
2Department of Electrical Engineering and Computer Science, Ann Arbor, MI.
3University of Michigan Comprehensive Cancer Center, Ann Arbor, MI.

Introduction

Patient visit to an outpatient Cancer Center
- Often long, multi-step process
- Can take anywhere from 30 min to 8 hrs
- Requires coordination of multiple departments
- Many opportunities for disruptions and delays
- Delay domino effect

Concerns
- Very long visit lengths
- Added stress and risk to patients
- Increase in provider overtime

Current State
- Nearly all infusion patients enter the system through phlebotomy
- Blood drawn for labs needed:
 - By provider before clinic appointment to assess patient
 - By pharmacy to initiate drug preparation
- Multi-step, multi-wait process, increasing patient wait times
- Non-uniform volume throughout the day
 - In order to fit in all following appointments, much higher patient volume in the morning

Problem Statement
- Determine changes in patient flow, phlebotomist work flow and/or staffing decisions to improve efficiencies and decrease wait times
- Unable to actually implement various changes in the working environment in order to test and assess effectiveness

Phlebotomy

Figure 2: Phlebotomy flow overview.

Current State
- Phlebotomy
 - Check-In
 - Phlebotomy
 - Blood Draw
 - Waiting Area
 - Phlebotomy
 - Lab Processing
 - Clinic
 - Pharmacy

Leveling Patient Arrival
- Nearly uniform
- Many opportunities for disruptions and delays
- Can assess impact of policy changes before actual implementation
- Maintain a growing queue of events that occur throughout the day, sorted by time of occurrence

Discrete Event Simulation

Approach
- Developed using C++
- Can manipulate input parameters to observe effect on various metrics
- Manipulability of simulation models allows users to explore the impact of changes without the risk of implementation
- Can assess impact of policy changes before actual implementation
- Maintain a growing queue of events that occur throughout the day, sorted by time of occurrence
- Model both patient and phlebotomist actions

Level system variability

Figure 3: Simulation process overview.

“What-If” Analysis

Current State
- Phlebotomy
 - Check-In
 - Phlebotomy
 - Blood Draw
 - Waiting Area
 - Phlebotomy
 - Lab Processing
 - Clinic
 - Pharmacy

Figure 4: Effect of leveling variable on wait times.

Patient volumes increase

1. Can current capacity handle increased volume?

Figure 5: Effect of increased volume on wait times.

2. How could staffing changes help accommodate?

Figure 6: Effects of staffing changes on wait times.

Future Work

- Continued improvement towards representing reality (current state)
 - More accurate service time distributions
 - More accurate arrival rate data
 - Non-instantaneous service transitions
 - Incorporation of additional roles
 - Incorporation of dynamic roles/staffing
 - Exploration of additional “what-if” scenarios
 - Implementation of improvements
 - Additional applications (outside of Phlebotomy) of model functionalities

Acknowledgements

This research is generously supported by the Center for Healthcare Engineering and Patient Safety, the Seth Borden Foundation, the U of M College of Engineering SURE Program, and the U-MHS Comprehensive Cancer Center.

We also thank all the CHEPS students that helped with this research and all the Cancer Center clinical collaborators, especially those representatives from the Phlebotomy Department.