Improving Patient Flow in an Outpatient Infusion Center
Sarah Bach¹, Jeremy Castaing¹, Prof. Amy Cohn¹, Prof. Brian Denton¹, Dr. Alon Weizer², Louise Salamin²
¹. Department of Industrial and Operations Engineering, 2. University of Michigan Comprehensive Cancer Center

Infusion Process Overview:
- Patient Arrives
- Labs Collected
- Clinic Appointment
- Pharmacy
- Infusion
- Patient Discharged

Lab Process Analysis
- Background:
 - Lab results need to be available before a provider can assess a patient in clinic, the pharmacy can begin drug preparation for infusion patients, and nurses can administer infusions to patients
- Methods:
 - Mapped process from patient arrival to lab resulted for three common infusion labs (CBCD, CMP, Type and Screen)
 - Explored idea of uncoupling patient visits meaning labs would be done the day before an appointment
- Findings:
 - Each of the three labs’ average processing times exceeded the one hour target turnaround time used for scheduling
 - Patient travel time results:
Driving Duration	Percent of Patients to Closest Lab Facility
Less than 15 min	32%
15 – 30 min	20%
30 – 60 min	23%
1 – 2 hours	15%
2 – 4 hours	7%
Over 4 hours	3%

Pharmacy Pre-mix Tool
- Background:
 - Pharmacy often does not prepare a patient’s drug in advance due to the expensive, toxic, and unstable nature of many chemotherapy drugs
 - Prepping additional drugs in advance can reduce patient wait times and level pharmacy’s workload
- Methods:
 - Identifying additional drugs to be prepared during make ahead time and creating formulation to rank drugs in order to be mixed

<table>
<thead>
<tr>
<th>Input</th>
<th>Effect on Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drug cost</td>
<td>Low cost → Higher priority</td>
</tr>
<tr>
<td>Probability of deferral or dosage change</td>
<td>Low probability → Higher priority</td>
</tr>
<tr>
<td>Number of patients receiving drug</td>
<td>Higher number of patients → Higher priority</td>
</tr>
<tr>
<td>Drug shelf life (hang by/expiration)</td>
<td>Long shelf life → Higher priority</td>
</tr>
<tr>
<td>Drug compounding time</td>
<td>Possibly short compounding time → Higher priority</td>
</tr>
<tr>
<td>Appointment time</td>
<td>Early appointment time → Higher priority</td>
</tr>
<tr>
<td>Length of infusion</td>
<td>Long infusion → Higher priority</td>
</tr>
</tbody>
</table>

Infusion Scheduling
- Background:
 - Chemotherapy treatment demands often exceeds ambulatory infusion capacity
 - Currently patients wait on average 45 minutes from arrival in infusion until they are seated in an infusion chair
 - Improved scheduling of infusion patients can lead to improved utilization of infusion resources resulting in reduced total length of day of operations and patient wait time
- Methods:
 - Used stochastic optimization to generate infusion patient appointment schedules which were evaluated through a discrete event simulation model
 - Optimization Model:
 - Minimize:
 - Trade-off between expected patient wait time and expected overtime
 - Subject to:
 - Patients are assigned to a time and a chair
 - Patients wait until a nurse and a chair are available
 - The day ends when the last patient is discharged
- Findings:
 - Scheduling patients with longer infusion times earlier in the day results in reduced total length of day operations and patient wait time

Acknowledgements
- Student Collaborators: Hassan Abbas, Vera Lo, Vanessa Morales, Donald Richardson, Matt Rouhana, Stephanie See, Pamela Martinez Villarreal
- Clinical Collaborators: Corrine Hardecki, Jennifer Mathie, Carol McMahon, Kelly Procaio, Carolina Typlados
- This research is generously supported by the Center for Healthcare Engineering and Patient Safety, the Seth Bonder Foundation, the Doctors Company Foundation, the U of M College of Engineering SURE Program, and the UMHS Comprehensive Cancer Center.