Optimal Strategies for Active Surveillance of Men With Prostate Cancer

William Yang, M.Eng.¹ wtyang@umich.edu
Zheng Zhang, Ph.D.¹; Wei Yu Li¹; Brian T. Denton, Ph.D.¹ ²

¹Department of Industrial and Operations Engineering, University of Michigan, ²Department of Urology, University of Michigan Medical School

Prostate Cancer (PCa)
- PCa is the 2nd most common cancer in American men
- American Cancer Society estimates about 29,430 deaths from PCa in 2018
- Early detection and treatment can mitigate the deterioration of patients’ health and improve survival rate
- Common treatments include radical prostatectomy, radiation therapy, and active surveillance
- Active surveillance is suited for low-risk cancer because it:
 - Has comparable survival rate with other treatments
 - Avoids treatment with significant side-effects

Active surveillance (AS) of PCa
- AS: periodically monitoring cancer using PSA or biopsy tests until it has progressed
- Testing infrequently could cause missed detection, but testing too frequently could cause significant harm from biopsies
- Research questions:
 - What is the optimal policy for when to biopsy?
 - When should biopsy be deferred for patients with low-risk PCa?

Partially Observable Markov Decision Process (POMDP) Model
- 5 states: C = low-risk cancer, P = progressed cancer, T = treatment, M = metastasized cancer, D = death
- Belief vector represent partially observable states of C and P:
 - \(\pi_n = P(P|P) \), the probability patient has progressed cancer in period n
- \(\pi_n \) is updated using Bayesian updating based on the observation in the current period
- Actions: wait (\(a_n = W \)), and biopsy (\(a_n = B \))
- Objective: maximize Quality Adjusted Life Years (QALY)
- We consider the following transition probabilities:

\[
P \rightarrow T \text{ happens immediately after } a \text{ biopsy result}
\]

<table>
<thead>
<tr>
<th>C</th>
<th>D</th>
<th>T</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>(\alpha)</td>
<td>(\beta)</td>
<td>(\gamma)</td>
</tr>
</tbody>
</table>

\(C, P \) are partially observable states

Optimality equations:
- Patient enters treatment immediately following a (+) biopsy

\[
\begin{align*}
\rho_{n}(r_n, W) + \sum_{i=1}^{3} P_i \rho_{n+1}(i, D) + (1 - \alpha) \beta \xi_{n+1}(P) R_{n+1}(M) \\
\end{align*}
\]

- Patient continues on to next period if the decision is to wait, or (-) biopsy result

\[
\begin{align*}
\rho_{n}(r_n, B) + \sum_{i=1}^{3} P_i \rho_{n+1}(i, D) + (1 - \alpha) \beta \xi_{n+1}(P) R_{n+1}(M) \\
\end{align*}
\]

- Another property of interest is the threshold policy:
 - A threshold policy exists if there is a probability \(\pi^* \), such that if the probability of having progressed cancer is above \(\pi^* \), then the optimal decision is to biopsy; otherwise, waiting is optimal

Results
- Used backward induction to generate values for optimality equation at every time period
- Create policy that will indicate whether it is optimal to wait or to biopsy for given belief vector at a given time period
- Figure 1 shows a graphical representation of reward function with respect to \(\pi_{n0} \) for \(n = 80 \)

\[
\begin{align*}
\text{Expected QALY} \times 100 \\
\end{align*}
\]

Conclusions
- There exists a Threshold Policy (\(\pi^* \)) at every time period, and this threshold increases with respect to age
- Patients over age 88 are suggested to discontinue surveillance because there is no benefit from treatment due to other cause mortality
- Threshold vs. time is most sensitive to \(\alpha_{M} \), \(\alpha_{P} \), \(\beta \), and \(\kappa \), and robust to the other values tested (\(\beta, f, \gamma, \alpha, \) and \(\beta \))

Acknowledgements
This work was supported by the National Science Foundation (CMMI 0844511 to BTD); any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.